机构地区:[1]Key Laboratory of Physical Oceanography, Ministry of Education, Ocean University of China, and Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China [2]College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao 266100, China [3]Beihai Offshore Engineering Survey Institute, State Oceanic Administration, Qingdao 266061, China
出 处:《Journal of Ocean University of China》2019年第4期751-760,共10页中国海洋大学学报(英文版)
基 金:supported by the National Natural Science Foundation of China (Nos. U1706215, 41506012, 41430963 and 41606005)
摘 要:Three seabed-mounted TD/CTD chains and two upward-looking acoustic Doppler current profilers (ADCPs) in the southwest of Zhangzi Island are used and a simultaneous cruise observation in the northern North Yellow Sea (NYS) is conducted to study temperature variation in the bottom thermal front zone of the NYS Cold Water Mass (NYSCWM) during the summer of 2009. In the flood-ebb tidal cycles, the bottom temperature decreases (increases) during flood (ebb) tides, which are dominated by the tidal-current induced horizontal advection. The ebb tide-induced temperature increase is larger than the flood tide-induced tempera- ture decrease due to seasonal warming. In the spring-neap tidal cycles, the temperature and the vertical temperature structure show notable fortnightly variation from 16 July to 25 August. The bottom temperature increases from neap to spring tides and decreases from spring to neap. The Richardson number demonstrates strengthened vertical mixing during spring tides but enhanced stratifica- tion during neap tides. The spring-neap variation in vertical shear caused by tidal current is the dominant factor that induces the fort- nightly variation in vertical mixing and thus bottom temperature.Three seabed-mounted TD/CTD chains and two upward-looking acoustic Doppler current profilers(ADCPs) in the southwest of Zhangzi Island are used and a simultaneous cruise observation in the northern North Yellow Sea(NYS) is conducted to study temperature variation in the bottom thermal front zone of the NYS Cold Water Mass(NYSCWM) during the summer of 2009. In the flood-ebb tidal cycles, the bottom temperature decreases(increases) during flood(ebb) tides, which are dominated by the tidal-current induced horizontal advection. The ebb tide-induced temperature increase is larger than the flood tide-induced temperature decrease due to seasonal warming. In the spring-neap tidal cycles, the temperature and the vertical temperature structure show notable fortnightly variation from 16 July to 25 August. The bottom temperature increases from neap to spring tides and decreases from spring to neap. The Richardson number demonstrates strengthened vertical mixing during spring tides but enhanced stratification during neap tides. The spring-neap variation in vertical shear caused by tidal current is the dominant factor that induces the fortnightly variation in vertical mixing and thus bottom temperature.
关 键 词:TIDAL effect NORTH YELLOW Sea Cold Water Mass temperature variation Zhangzi ISLAND thermal front
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...