基于Movidius神经计算棒的行人检测方法  被引量:13

Pedestrian detection method based on Movidius neural computing stick

在线阅读下载全文

作  者:张洋硕 苗壮 王家宝 李阳 ZHANG Yangshuo;MIAO Zhuang;WANG Jiabao;LI Yang(College of Command and Control Engineering,Army Engineering University,Nanjing Jiangsu 210007,China)

机构地区:[1]陆军工程大学指挥控制工程学院

出  处:《计算机应用》2019年第8期2230-2234,共5页journal of Computer Applications

基  金:国家自然科学基金资助项目(61806220)~~

摘  要:Movidius神经计算棒是基于USB模式的深度学习推理工具和独立的人工智能加速器,为广泛的移动和嵌入式视觉设备提供专用深度神经网络加速功能。针对深度学习的嵌入式应用,实现了一种基于Movidius神经计算棒的近实时行人目标检测方法。首先,通过改进RefineDet目标检测网络结构使模型大小和计算适应嵌入式设备的要求;然后,在行人检测数据集上对模型进行重训练,并部署于搭载Movidius神经计算棒的树莓派上;最后,在实际环境中对模型进行测试,算法达到了平均每秒4帧的处理速度。实验结果表明,基于Movidius神经计算棒,在计算资源紧张的树莓派上可完成近实时的行人检测任务。Movidius neural computing stick is a USB-based deep learning inference tool and a stand-alone artificial intelligence accelerator that provides dedicated deep neural network acceleration for a wide range of mobile and embedded vision devices.For the embedded application of deep learning,a near real-time pedestrian target detection method based on Movidius neural computing stick was realized.Firstly,the model size and calculation were adapted to the requirements of the embedded device by improving the RefineDet target detection network structure.Then,the model was retrained on the pedestrian detection dataset and deployed on the Raspberry Pi equipped with Movidius neural computing stick.Finally,the model was tested in the actual environment,and the algorithm achieved an average processing speed of 4 frames per second.Experimental results show that based on Movidius neural computing stick,the near real-time pedestrian detection task can be completed on the Raspberry Pi with limited computing resources.

关 键 词:行人检测 深度学习 树莓派 Movidius 嵌入式设备 

分 类 号:TP183[自动化与计算机技术—控制理论与控制工程] TP391.4[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象