检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李宗华 董明明[1] 王玉帅 LI Zong-hua;DONG Ming-ming;WANG Yu-shuai(School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China)
机构地区:[1]北京理工大学机械与车辆学院
出 处:《机械设计与制造》2019年第8期4-7,共4页Machinery Design & Manufacture
摘 要:卡尔曼滤波器是线性动态系统中应用最广泛的一种状态估计方法。在非线性系统中,扩展卡尔曼滤波(EKF)和无迹卡尔曼滤波(UKF)被广泛应用,相比扩展卡尔曼滤波器,无迹卡尔曼滤波器准确度更高、更易于实现。在车辆动力学这种强的非线性系统中,无迹卡尔曼滤波器应用广泛。设计了一种基于无迹卡尔曼滤波器的半主动悬架系统状态观测器,讨论了不准确的过程噪声协方差Q和测量噪声协方差R、及测量信号组合的选择和不准确的模型参数对状态观测精度的影响,仿真结果表明不准确的过程噪声和测量噪声协方差、不合适的测量信号选择和模型参数不准确的干扰在不同程度上降低了状态估计精度。The Kalman filter(KF)is probably the most widely used estimation algorithm for dynamic system. However,KF is only reliable for systems that are linear on time scale of the updates. In nonlinear systems,unscented Kalman filter(UKF)is more widely used than extended Kalman filter(EKF)for its higher accuracy and easier implementation in recent years. UKF is also employed in vehicle dynamic system which is serious nonlinear. This paper presents a state observer design for semi-active suspension based on UKF. The effects of incorrect process noise covariance Q and measurement noise covariance R,selection of measurement signals set and parameters disturbance are discussed,and the simulation results show that incorrect noise covariance of process and measurement,unsuitable measurement signals set and model parameter disturbances reduce the estimation accuracy in varying degrees.
关 键 词:无迹卡尔曼滤波器 状态观测器 噪声协方差 测量信号选择 参数干扰
分 类 号:TH16[机械工程—机械制造及自动化] U462.3[机械工程—车辆工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.175