Geochemical characterization of major elements in desert sediments and implications for the Chinese loess source  被引量:9

Geochemical characterization of major elements in desert sediments and implications for the Chinese loess source

在线阅读下载全文

作  者:Wancang ZHAO Lianwen LIU Jun CHEN Junfeng JI 

机构地区:[1]Chongqing Key Laboratory of Karst Environment, School of Geographical Sciences, Southwest University, Chongqing 400715, China [2]Ministry of Education Key Laboratory of Surficial Geochemistry, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China

出  处:《Science China Earth Sciences》2019年第9期1428-1440,共13页中国科学(地球科学英文版)

基  金:supported by the National Natural Science Foundation of China (Grant Nos. 41673095, 41230526, 41690111 & 41877369);the Fundamental Research Funds for the Central Universities (Grant No. Swu118203)

摘  要:Mineral dust released from the desert is one of the important components of atmospheric aerosols. Arid and semi-arid deserts, sandy lands in northern China and their adjacent Gobi Desert lands in northern China and neighboring Mongolia(hereinafter referred to as Gobi) are potential sources of mineral dust in Asia. However, there is currently a lack of systematic studies on the characteristics of major elements in the potential mineral dust source area. This study investigates the major elements of 310 surficial sand samples in the stabilized and semi-stabilized dune fields from 12 deserts/sandy land and Gobi in northern China and southern Mongolian Gobi and compiles published data. We identify four regions with distinct geochemical characteristics:(1) Taklimakan, Kumtag and Qaidam deserts in western China;(2) Badain Jaran, Tengger, Hobq, and Mu Us deserts in the central and western regions of northern China;(3) Hulun Buir, Onqin Daga and Horqin sandy lands in northeast China;and(4) Gobi and Gurbantunggut deserts. The spatial distributions of the SiO2 and CaO contents in Chinese deserts are highly variable. The average content of SiO2 generally reflects an increasing trend from west to east, while the average content of CaO shows a decreasing trend from west to east. We demonstrate that the spatial variation of major elements is likely controlled by two key scenarios: the composition of source rocks and the mineral maturity caused by the supply of fresh materials. The SiO2/(Al2O3+K2O+Na2O) ratio of desert sediments is relatively lower in western China and may be caused by high ferricmagnesia and high carbonate minerals;this ratio is relatively higher in the northeast sandy lands and may be linked to a lack of fresh material supply and the presence of high K-feldspar minerals in source rocks. The deserts can be further distinguished by ternary diagrams with SiO2/10-CaO-Al2O3,(K2O+Na2O)-CaO-Fe2O3 and CaO-Na2O-K2O. The comparison of major elements between desert sediments and loess suggests that the western and/or ceMineral dust released from the desert is one of the important components of atmospheric aerosols. Arid and semi-arid deserts, sandy lands in northern China and their adjacent Gobi Desert lands in northern China and neighboring Mongolia(hereinafter referred to as Gobi) are potential sources of mineral dust in Asia. However, there is currently a lack of systematic studies on the characteristics of major elements in the potential mineral dust source area. This study investigates the major elements of 310 surficial sand samples in the stabilized and semi-stabilized dune fields from 12 deserts/sandy land and Gobi in northern China and southern Mongolian Gobi and compiles published data. We identify four regions with distinct geochemical characteristics:(1) Taklimakan, Kumtag and Qaidam deserts in western China;(2) Badain Jaran, Tengger, Hobq, and Mu Us deserts in the central and western regions of northern China;(3) Hulun Buir, Onqin Daga and Horqin sandy lands in northeast China; and(4) Gobi and Gurbantunggut deserts. The spatial distributions of the SiO2 and CaO contents in Chinese deserts are highly variable. The average content of SiO2 generally reflects an increasing trend from west to east, while the average content of CaO shows a decreasing trend from west to east. We demonstrate that the spatial variation of major elements is likely controlled by two key scenarios: the composition of source rocks and the mineral maturity caused by the supply of fresh materials. The SiO2/(Al2O3+K2O+Na2O) ratio of desert sediments is relatively lower in western China and may be caused by high ferricmagnesia and high carbonate minerals; this ratio is relatively higher in the northeast sandy lands and may be linked to a lack of fresh material supply and the presence of high K-feldspar minerals in source rocks. The deserts can be further distinguished by ternary diagrams with SiO2/10-CaO-Al2O3,(K2O+Na2O)-CaO-Fe2O3 and CaO-Na2O-K2O. The comparison of major elements between desert sediments and loess sugge

关 键 词:DESERT LOESS Major elements EOLIAN DUST CARBONATE 

分 类 号:P[天文地球]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象