检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:程勇 郑忠仁[2] 王军 CHENG Yong;ZHENG Zhong-ren;WANG Jun(Technology Industry Department,Nanjing University of Information Science & Technology,Nanjing 2 Jiangsu 210044,China;Department of Computer & Software,Nanjing University of Information Science & Technology,Nanjing Jiangsu 210044,China)
机构地区:[1]南京信息工程大学科技产业处,江苏南京210044 [2]南京信息工程大学计算机与软件学院,江苏南京210044
出 处:《计算机仿真》2019年第8期231-235,252,共6页Computer Simulation
基 金:国家自然科学基金资助项目(61402236,61373064);赛尔网络下一代互联网技术创新项目(NGII20160318);江苏省“六大人才高峰”项目(2015-DZXX-015)
摘 要:针对气象数据属性冗余度高和现有属性约简算法效率慢的问题,提出一种基于精英策略的协同进化属性约简算法。该算法将进化种群分为两个子种群,一个子种群借助精英个体协助交叉,提高算法的收敛速度。另一子种群通过引入随机种群,平衡进化过程中种群多样性,最后两个子种群协同完成进化操作。与TSDPSO-AR算法和ARAGA算法对气象数据进行降水属性约简操作,结果表明,提出的算法维持了进化过程中种群的多样性,提高了约简性能,简化了信息系统。Aiming at the problem of high attribute redundancy for meteorological data and slow efficiency of existing attribute reduction algorithms, an attribute reduction algorithm based on elite strategy for co-evolution of meteorological data was proposed. By dividing the evolutionary population into two subpopulations, a subpopulation used the elite individuals to assist crossover operations to increase the convergence speed of the algorithm, another subpopulation balanced population diversity through evolution by introducing random populations, and the last two subpopulations completed the evolutionary operations cooperatively. With the TSDPSO-AR algorithm and ARAGA algorithm , the precipitation attribute reduction operation for meteorological data was performed. The results show that the proposed algorithm maintains the diversity of population during evolution, improves the reduction performance, and simplifies the information system.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145