检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王慧玲 宋威[1,2] 王晨妮 Wang Huiling;Song Wei;Wang Chenni(School of Internet of Things Engineering,Jiangnan University,Wuxi Jiangsu 214122,China;Engineering Research Center of Internet of Things Technology Applications for Ministry of Education,Wuxi Jiangsu 214122,China)
机构地区:[1]江南大学物联网工程学院,江苏无锡214122 [2]物联网技术应用教育部工程研究中心,江苏无锡214122
出 处:《计算机应用研究》2019年第9期2613-2617,共5页Application Research of Computers
基 金:国家自然科学基金资助项目(61673193);中央高校本科研业务费专项资金资助项目(JUSRP51635B,JUSRP51510);江苏省自然科学基金资助项目(BK20150159);中国博士后科学基金资助项目(2017M621625)
摘 要:自动编码器通过深度无监督学习能够表达数据的语义特征,但由于其隐含层节点个数难以有效确定,所处理的数据进一步用于分类时常会导致分类准确度低、稳定性弱等问题。针对这些问题,提出了一种稀疏和标签约束的半监督自动编码器(SLRAE),以实现无监督学习与监督学习的有机结合,更准确地抽取样本的本质特征。稀疏约束项针对每个隐含节点的响应添加约束条件,从而在隐含神经元数量较多的情况下仍可发现数据中潜在的结构;同时引入标签约束项,以监督学习的方式比对实际标签与期望标签,针对性地调整网络参数,进一步提高分类准确率。为验证所提方法的有效性,实验中对多个数据集进行广泛测试,其结果表明,相对传统自动编码器(AE)、稀疏自动机(SAE)以及极限学习机(ELM),SLRAE所处理的数据应用于同一分类器,能明显提高分类准确率和稳定性。Auto-encoder could express the semantic features of data through deep unsupervised learning, but it was hard to determine the nodes of hidden layer and the processing of data for classification often leads to low accuracy and low stability. To solve the problems, this paper proposed a semi-supervised auto- encoder using sparse and label regularizations (LSRAE) to extract the essential features of the samples more accurately by combining unsupervised learning with supervised learning. The sparse regularization term added constraints to the response of each hidden node, so that this algorithm could find potential structures in the data when the number of hidden neurons was large. At the same time, this algorithm introduced a label regularization term to compare the actual labels with desired labels by supervised learning to adjust the network parameters and further improve the classification accuracy. In order to verify the validity of the proposed method, this algorithm tested many data sets in the experiment. The results show that compared with traditional auto-encoders (AE), sparse auto- encoder (SAE), and extreme learning machine (ELM), SLRAE can obviously improve the classification accuracy and stability when the processed data is applied to the same classifier.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.233