检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:戴永彬[1] 纪川川 康伟伟 Dai Yongbin;Ji Chuanchuan;Kang Weiwei(College of Software,Liaoning University of Technology,Jinzhou Liaoning 121001,China)
机构地区:[1]辽宁工业大学软件学院
出 处:《计算机应用研究》2019年第9期2665-2670,共6页Application Research of Computers
基 金:辽宁省自然科学基金资助项目(2013020036)
摘 要:为了解决多目标优化求解的问题,提出一种基于旋转基技术的多目标粒子群优化算法(rt MOPSO)。改进了旋转基可视化技术,并将Pareto前沿映射到改进的旋转基扇形平面上,采用差熵指标监测种群进化状态。为平衡归档集的收敛性和多样性,提出了角度支配和角度支配力度两种新的概念,并设计归档集新的排序方法。在融合了旋转基角度和距离的概念的基础上,提出了一种改进的全局引导粒子的选择策略。改进算法采用两个类别的测试函数,与五种多目标优化算法进行了对比实验。实验结果表明,改进算法在收敛性和多样性方面优势明显。This paper proposed a multi-objective particle swarm algorithm based on rotation basis( rtMOPSO) in order to solve problems about multi-objective optimization. Firstly,it detected Pareto front maps to the improved sectorial plane of rotation basis so that evolutionary status of the population by the entropy and its difference entropy of the population. Then,it proposed angle dominance and strength of angle dominance to design an archive maintaining strategy which could balance diversity and convergence. Finally,it proposed selecting the global best solution based on rotation angle and distance of the rotation basis.It compared the improved algorithm with five multi-objective optimization algorithms on two kinds of test suites. The Simulation results show that improved algorithm has big advantages over the other competitors in terms of diversity and convergence.
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222