A unified poroviscoelastic model with mesoscopic and microscopic heterogeneities  被引量:11

A unified poroviscoelastic model with mesoscopic and microscopic heterogeneities

在线阅读下载全文

作  者:Boya Zhang Dinghui Yang Yuanfeng Cheng Yunyin Zhang 

机构地区:[1]Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China [2]Shengli Geophysical Research Institute ofSINOPEC, Dongying 257000, China

出  处:《Science Bulletin》2019年第17期1246-1254,共9页科学通报(英文版)

基  金:supported by the National Natural Science Foundation of China (41390452, 91730306)

摘  要:The wave-induced fluid flow(WIFF) is considered to be the main cause of dispersion and attenuation of seismic waves in fluid-saturated porous media. Among numerous theories, the mesoscopic and microscopic heterogeneities are considered to be the primary mechanisms causing the WIFF. Furthermore,in most rocks, the mesoscopic and microscopic heterogeneities exist simultaneously and can cause obvious transitions of the fast P-wave velocity, which means it is necessary to consider the influence of the two mechanisms on the dispersion and attenuation simultaneously. Numerous results have shown that the dispersions and attenuations caused by these two mechanisms can be approximated in terms of the Zener model. To combine the two mechanisms into a unified model, we introduce a new generalized Zener model into the Biot poroelasticity theory to obtain a new poroviscoelastic model. Comparisons between the numerical results and two groups of experimental data further confirm the validity of our new model.The wave-induced fluid flow(WIFF) is considered to be the main cause of dispersion and attenuation of seismic waves in fluid-saturated porous media. Among numerous theories, the mesoscopic and microscopic heterogeneities are considered to be the primary mechanisms causing the WIFF. Furthermore,in most rocks, the mesoscopic and microscopic heterogeneities exist simultaneously and can cause obvious transitions of the fast P-wave velocity, which means it is necessary to consider the influence of the two mechanisms on the dispersion and attenuation simultaneously. Numerous results have shown that the dispersions and attenuations caused by these two mechanisms can be approximated in terms of the Zener model. To combine the two mechanisms into a unified model, we introduce a new generalized Zener model into the Biot poroelasticity theory to obtain a new poroviscoelastic model. Comparisons between the numerical results and two groups of experimental data further confirm the validity of our new model.

关 键 词:MESOSCOPIC HETEROGENEITY MICROSCOPIC HETEROGENEITY VISCOELASTIC MODEL Poroviscoelastic MODEL 

分 类 号:N[自然科学总论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象