机构地区:[1]School of Chemistry, Sun Yat-sen University
出 处:《Chinese Chemical Letters》2019年第9期1600-1606,共7页中国化学快报(英文版)
基 金:supported by the National Natural Science Foundation of China (Nos. 21675178, 21575167 and 21775167);the Guangdong Provincial Natural Science Foundation of China (No. 2016A030313358);the Research and Development Plan for Key Areas of Food Safety in Guangdong Province of China (No. 2019B020211001);the Guangzhou Science and Technology Program of China (No. 201604020165)
摘 要:Electrogenerated chemiluminescence, also known as electrochemiluminescence, abbreviated ECL, is a new technology combining electrochemistry and chemiluminescence. It is generated by high-energy electrons generated on the surface of the electrode in the emission process of excited state photons formed in the transfer process, and is a perfect combination of electrochemistry and spectroscopy. It not only has the advantages of good environment, high luminosity and wide dynamic range, but also has the characteristics of simple, stable and practical electrochemical methods, and nearly zero background signals. With the rapid development of nanomaterials, due to their unique electrical properties, large specific surface area, good biocompatibility and other characteristics, various nanomaterials have been widely used in the field of biosensors and sensitive detection. This review presented a general description of the research status of four different types of biosensors from the last decade years, summarized the application forms of nanomaterials in ECL biosensor, and outlines the building patterns and application example of the four main types of biosensors.Electrogenerated chemiluminescence, also known as electrochemiluminescence, abbreviated ECL, is a new technology combining electrochemistry and chemiluminescence. It is generated by high-energy electrons generated on the surface of the electrode in the emission process of excited state photons formed in the transfer process, and is a perfect combination of electrochemistry and spectroscopy. It not only has the advantages of good environment, high luminosity and wide dynamic range, but also has the characteristics of simple, stable and practical electrochemical methods, and nearly zero background signals. With the rapid development of nanomaterials, due to their unique electrical properties, large specific surface area, good biocompatibility and other characteristics, various nanomaterials have been widely used in the field of biosensors and sensitive detection. This review presented a general description of the research status of four different types of biosensors from the last decade years, summarized the application forms of nanomaterials in ECL biosensor, and outlines the building patterns and application example of the four main types of biosensors.
关 键 词:ELECTROCHEMILUMINESCENCE NANOMATERIALS DISEASE diagnosis BIOSENSOR QUANTITATIVE determination Application PROGRESS
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...