检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨勇[1] 胡思茹 YANG Yong;HU Siru(The Tenth Research Institute of China Electronics Technology Group Corporation, Chengdu 610036, China;National Key Laboratory of Radar Signal Processing, Xidian University, Xi’an 710071, China)
机构地区:[1]中国电子科技集团公司第十研究所,四川成都610036 [2]西安电子科技大学雷达信号处理国家重点实验室,陕西西安710071
出 处:《系统工程与电子技术》2019年第10期2235-2242,共8页Systems Engineering and Electronics
基 金:国家自然科学基金(61772397,61471283)资助课题
摘 要:主要研究光学与合成孔径雷达(synthetic aperture radar,SAR)图像的配准。光学图像与SAR图像间完全不同的成像特性以及后者中斑点噪声的影响,增加了二者之间的配准难度。此外,SAR图像数据量随着分辨率的升高而增大,这也对配准算法的实时性提出了更高的要求。针对这些问题,提出了一种逐步求精的光学与SAR图像配准方法,首先对SAR图像提取感兴趣区域用于图像间的粗配准,以减少算法压力,之后提取图像中稳定结构特征,构建光学图像与SAR图像间精确变换关系。通过实测数据实验,证明了该算法的有效性。This paper focuses on the registration of optical and synthetic aperture radar (SAR) images. Due to the completely different imaging characteristics between optical and SAR images and the influence of speckle noise in the latter, the difficulty of registration between them is increased. In addition, the size of SAR image data increases with increasing resolution, which also imposes higher requirement on the real-time properties of the registration algorithm. To solve these problems, a stepwise refinement method for optical and SAR images registration is presented. Firstly, the region of interest extracted in SAR images is used for coarse registration between the images, which can reduce the algorithm pressure efficiently. After that the stable structural features in the images is extracted to construct an exact transformation between optical and SAR images . According to the experimental result of measured data, the effectiveness of the algorithm can be proved.
关 键 词:光学与合成孔径雷达图像配准 感兴趣区域 模板匹配 HAUSDORFF距离
分 类 号:TN957.52[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.185