机构地区:[1]Advanced Gas Turbine Laboratory, Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China [2]University of Chinese Academy of Sciences, Beijing 100049, China
出 处:《Journal of Thermal Science》2019年第5期915-928,共14页热科学学报(英文版)
基 金:financial support from National Key R&D Program of China under Grant NO.2018YFB0606100;the National Natural Science Foundation of China under Grant NO. 51790510 and NO. 51727810
摘 要:Casing treatments(CT) can effectively extend compressors flow ranges with the expense of efficiency penalty. Compressor efficiency is closely linked to loss. Only revealing the mechanisms of loss generation can design a CT with high aerodynamic performance. In the paper, a highly-loaded mixed-flow compressor with tip clearance of 0.4 mm was numerically studied at a rotational speed of 30,000 r/min to reveal the effects of axial slot casing treatment(ASCT) on the loss mechanisms in the compressor. The results showed that both isentropic efficiency and stall margin were improved significantly by the ASCT. The local entropy generation method was used to analyze the loss mechanisms and to quantify the loss distributions in the blade passage. Based on the axial distributions of entropy generation rate, for both the cases with and without ASCT, the peak entropy generation rate increased in the rotor domain and decreased in the stator domain during throttling the compressor. The peak entropy generation in rotor was mainly caused by the tip leakage flow and flow separations near the rotor leading edge for the mixed-flow compressor no matter which casing was applied. The radial distributions of entropy generation rate showed that the reduction of loss in the rotor domain from 0.4 span to the rotor casing was the major reason for the efficiency improved by ASCT. The addition of ASCT exerted two opposite effects on the losses generated in the compressor. On the one hand, the intensity of tip leakage flow was weakened by the suction effect of slots, which alleviated the mixing effect between the tip leakage flow and main flow, and thus reduced the flow losses;On the other hand, the extra losses upstream the rotor leading edge were produced due to the shear effect and to the heat transfer. The aforementioned shear effect was caused by the different velocity magnitudes and directions, and the heat transfer was caused by temperature gradient between the injected flow and the incoming flow. For case with smooth casing(SC), 61.61Casing treatments(CT) can effectively extend compressors flow ranges with the expense of efficiency penalty. Compressor efficiency is closely linked to loss. Only revealing the mechanisms of loss generation can design a CT with high aerodynamic performance. In the paper, a highly-loaded mixed-flow compressor with tip clearance of 0.4 mm was numerically studied at a rotational speed of 30,000 r/min to reveal the effects of axial slot casing treatment(ASCT) on the loss mechanisms in the compressor. The results showed that both isentropic efficiency and stall margin were improved significantly by the ASCT. The local entropy generation method was used to analyze the loss mechanisms and to quantify the loss distributions in the blade passage. Based on the axial distributions of entropy generation rate, for both the cases with and without ASCT, the peak entropy generation rate increased in the rotor domain and decreased in the stator domain during throttling the compressor. The peak entropy generation in rotor was mainly caused by the tip leakage flow and flow separations near the rotor leading edge for the mixed-flow compressor no matter which casing was applied. The radial distributions of entropy generation rate showed that the reduction of loss in the rotor domain from 0.4 span to the rotor casing was the major reason for the efficiency improved by ASCT. The addition of ASCT exerted two opposite effects on the losses generated in the compressor. On the one hand, the intensity of tip leakage flow was weakened by the suction effect of slots, which alleviated the mixing effect between the tip leakage flow and main flow, and thus reduced the flow losses; On the other hand, the extra losses upstream the rotor leading edge were produced due to the shear effect and to the heat transfer. The aforementioned shear effect was caused by the different velocity magnitudes and directions, and the heat transfer was caused by temperature gradient between the injected flow and the incoming flow. For case with smooth casing(SC), 61.6
关 键 词:NUMERICAL simulation mixed-flow COMPRESSOR LOSS MECHANISM CASING TREATMENT
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...