检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张晓[1] 王莉莉 ZHANG Xiao;WANG Li-li(No.30 Institute of CETC, Chengdu Sichuan 610054, China)
机构地区:[1]中国电子科技集团公司第三十研究所
出 处:《通信技术》2019年第9期2143-2148,共6页Communications Technology
摘 要:针对遥感图像中舰艇目标识别性能低的问题,提出了加权投票分类器融合方法。首先分析了舰艇的颜色特征与轮廓特征,然后利用SVM、BP神经网络和AdaBoost算法训练三种单分类器,最后采用加权投票方式对单分类器进行融合。采用融合分类器进行舰艇目标识别实验分析,实验结果表明:在google卫星图像舰艇目标识别中,所提方法能够有效提升舰艇目标识别准确率,F-measure可以达到73.54%,相较于SVM提升了2.72%,相较于AdaBoost提升了3.53%,相较于BP神经网络提升了4.28%。Aiming at the low performance of ship target recognition in remote sensing images, a weighted voting classifier fusion method is proposed. Firstly, the color and contour features of naval vessels are analyzed. Then three single classifiers are trained by SVM algorithm, BP neural network and AdaBoost algorithm. Finally, the single classifier is fused by weighted voting. Fusion classifier is used to carry out experimental analysis of ship target recognition. The experimental results show that the proposed method can effectively improve the accuracy of ship target recognition in Google satellite image. And the F-measure can reach 73.54%, compared with SVM, AdaBoost and BP neural network, increased by 2.72%, 3.53% and 4.28% respectively.
关 键 词:SVM BP神经网络 ADABOOST 加权投票 分类器融合 遥感图像识别 舰艇识别
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3