检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张勇[1] 何贵松 李彦婧[1] 潘兰[1] 田波[1] ZHANG Yong;HE Gui-Song;LI Yan-Jin;PAN Lan;TIAN Bo(Research Institute of Exploration and Develoment,East China Branch of SINOPEC,Nanjing 210005,China)
出 处:《科学技术与工程》2019年第25期83-89,共7页Science Technology and Engineering
基 金:国家科技重大专项(2016ZX05061)资助
摘 要:孔隙度是海相页岩气富集高产一个重要因素,获取孔隙度平面特征是优选页岩储层"甜点"的一个关键环节。应用叠前反演技术及概率神经网络技术定量预测南川地区孔隙度,首先在叠前反演过程中,做好道集预处理、地震标定、子波提取,低频模型建立关键技术质量控制,获取高精度叠前反演成果;其次在概率神经网络学习训练过程中,做好交叉验证分析,优选地震属性。通过两种技术方法的结合,有效预测了南川地区孔隙度发育特征,为页岩水平井部署、钻探及区域综合评价提供资料基础。Porosity is an important factor in the high yield of marine shale gas enrichment. Obtaining the porosity plane feature is a key link in the preferred "sweet zone"of shale reservoirs. The pre-stack inversion technique and probabilistic neural network technology are used to quantitatively predict the porosity of Nanchuan area. Firstly,in the pre-stack inversion process,dodder pretreatment,seismic calibration,wavelet extraction,low frequency model establish key technical quality control,and obtain high-precision prestack inversion results. Secondly,in the process of probabilistic neural network learning and training,cross-validation analysis is performed,and seismic attributes are preferred. Through a combination of two technical methods,It effectively predicts the porosity development characteristics of Nanchuan area and provides a data basis for shale horizontal well deployment,drilling and regional comprehensive evaluation.
分 类 号:P631.41[天文地球—地质矿产勘探]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.43