检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:况逸群 程洪[1] 崔芳 KUANG Yi-qun;CHENG Hong;CUI Fang(Center for Robotics,University of Electronic Science and Technology of China,Chengdu 611731)
机构地区:[1]电子科技大学机器人研究中心
出 处:《电子科技大学学报》2019年第5期747-753,共7页Journal of University of Electronic Science and Technology of China
摘 要:为解决手姿态估计中标签数据的获取困难问题,该文提出了一种基于多视图投影的半监督学习方法,减少对标记数据的需求。首先,从单张深度图中分割出手部区域,将其投影至3个正交平面;而后,采用编解码模型学习两个投影视图在低维度隐空间中的关联表征;最终,结合标记数据,学习低维度隐空间表征到手姿态三维坐标的回归映射。实验表明,该方法减少了对标记数据的依赖,在NYU手姿态估计数据库上获得了较好的结果。For hand pose estimation,one immediate problem is to reduce the need for labeled data which is difficult to provide in desired quantity,realism and accuracy.To meet this need,a novel multi-view projection based semi-supervised learning algorithm is proposed.Firstly,3D hand points are extracted from a single depth image without label and projected onto three orthogonal planes.Secondly,an encoder-decoder model is applied to learn the latent representation of two projections.Finally,small amount of labeled data is used to learn a mapping from latent representation to hand joint coordinates.The propose algorithm is evaluated on NYU hand pose estimation dataset,and the experimental results demonstrate the effectiveness and advantages of our proposed algorithm.
分 类 号:TP242.6[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117