检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:孙健 李琪[1,2] 陈明强 任龙[2,3] SUN Jian;LI Qi;CHEN Mingqiang;REN Long(College of Petroleum Engineering,China University of Petroleum (Beijing),Beijing 102249,China;College of Petroleum Engineering,Xi'an Shiyou University,Xi'an 710065,Shaanxi,China;Key Laboratory of Shaanxi Province for Oil and Gas Well and Reservoir Seepage and Rock Mechanics,Xi'an Shiyou University,Xi'an 710065,Shaanxi,China)
机构地区:[1]中国石油大学(北京)石油工程学院,北京102249 [2]西安石油大学石油工程学院,陕西西安710065 [3]西安石油大学陕西省油气井及储层渗流与岩石力学重点实验室,陕西西安710065
出 处:《西安石油大学学报(自然科学版)》2019年第5期79-85,90,共8页Journal of Xi’an Shiyou University(Natural Science Edition)
基 金:国家自然科学基金青年科学基金项目“致密油体积压裂缝网形成及多重介质流固全耦合流动模拟”(51704235);陕西省高校科协青年人才托举计划“非常规储层体积压裂缝网形成机制及扩展模拟”(20180417)
摘 要:为了解决基于测井数据对油气水层的实时识别这一技术难题,利用计算机科学与现代数学,结合随钻测井技术与机器学习算法进行油气水层的随钻识别。首先,对训练集数据进行相关性分析,剔除弱相关或冗余数据;其次,选择一对多支持向量机、一对一支持向量机以及随机森林算法分别建立油气水层分类识别模型,并使用网格搜索方法及10折交叉验证法对3种分类识别模型参数进行优选;最后,运用参数优选后的各分类识别模型,对随钻测井数据进行油气水层的识别。研究结果表明,3种分类识别模型对研究区块油气水层随钻识别的准确率均达到75%以上。在训练样本较少的情况下,优先选用一对一支持向量机分类识别模型进行油气水层的随钻识别。In order to solve the technical difficulty of real-time identification of oil/gas and water layers based on logging data,based on computer science and modern mathematics,logging while drilling technology is combined with machine learning algorithm to identify the oil/gas and water layer while drilling.Firstly,the correlation analysis is performed on the data in training set to eliminate weak correlation or redundant data.Secondly,oil/gas and water layers recognition models are established using one-versus-rest support vectormachine,one-versus-one support vector machine,and random forest algorithm respectively,and the parameters of three recognition models are optimized using grid search method and 10-fold crossvalidation method.Finally,based on logging data while-drilling,the oil/gas and water layers are identified using the models whose parameters are optimized.The results show that the recognition accuracy of three models in the study area is higher than 75%.In the case of less training samples,the recognition model established using one-versus-one support vector machine has the best effect to the identification of oil/gas and water layers while drilling.
关 键 词:随钻油气水层识别 机器学习 支持向量机 随机森林算法 模型优选
分 类 号:TE319[石油与天然气工程—油气田开发工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15