检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:朱合华[1,2,3] 周龙 朱建文[1,3,4] ZHU He-hua;ZHOU Long;JU Jiann-wen(State Key Laboratory for Disaster Reduction in Civil Engineering,Tongji University,Shanghai 200092,China;Key Laboratory of Geotechnical and Underground Engineering of the Ministry of Education,Tongji University,Shanghai 200092,China;Department of Geotechnical Engineering,College of Civil Engineering,Tongji University,Shanghai 200092,China;Department of Civil and Environmental Engineering,University o f California,Los Angeles,CA 90095,USA)
机构地区:[1]同济大学土木工程防灾国家重点实验室,上海200092 [2]同济大学隧道及地下工程教育部重点实验室,上海200092 [3]同济大学土木工程学院地下建筑与工程系,上海200092 [4]加州大学洛杉矶分校土木与环境工程系,美国加利福尼亚90095
出 处:《岩土工程学报》2019年第9期1581-1590,共10页Chinese Journal of Geotechnical Engineering
基 金:国家自然科学基金项目(51578410);土木工程防灾国家重点实验室自主课题(SLDRCE14-A-09)
摘 要:梁–弹簧模型法在盾构管片衬砌设计计算中逐渐得到广泛应用,但现有的梁–弹簧模型无法模拟盾构衬砌管片接头的不连续变形及接头转动刚度的非线性特性。基于此,开展了梁–弹簧模型在衬砌设计中的适用性及非线性接头转动刚度在梁–弹簧模型中的应用研究。研究表明:根据对相邻管片在接头位置结点位移处理的不同,可将梁–弹簧模型分为梁–弹簧连续模型和梁–弹簧不连续模型,后者又称为梁–接头模型,可准确分析盾构管片衬砌的内力及变形。采用梁–弹簧不连续模型求解衬砌内力及变形时:对于线性接头转动刚度模型,可基于卡氏第二定理求解;对于多段线性模型,可基于卡氏第一定理或克–恩定理求解;对于非线性模型,可采用增量–迭代法数值求解。The beam-spring model method has been widely used in the design and calculation of shield tunnel lining, but the existing beam-spring models cannot simulate the discontinuous deformation of the segmental joints and the nonlinear characteristics of the joint rotational stiffness. Therefore, the applicability of the beam-spring models in the design of shield lining and the application of nonlinear joint rotational stiffness in the beam-spring models are studied. The results show that according to the different disposal of the nodal displacement at the joint positions between the adjacent segments, the beam-spring models can be divided into the beam-spring continuous model and the beam-spring discontinuous model, and the latter is also called the beam-joint model, in which the internal force and deformation of the shield lining can be accurately analyzed. When the beam-spring discontinuous model is employed to calculate the internal force and deformation of shield lining structures, the Second Castigliano’s Theorem can be used for the segmental joints with linear rotational stiffness model, the First Castigliano’s Theorem or Crotti-Engesser’s Theorem can be used for the segmental joints with multi-linear stiffness model, and the numerical solution based on the increment iteration method can be used for the segmental joints with nonlinear stiffness model.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3