检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:钟毓灵 王习特 白梅 朱斌[1] 李冠宇[1] ZHONG Yuling;WANG Xite;BAI Mei;ZHU Bin;LI Guanyu(School of Information Science and Technology,Dalian Maritime University,Dalian,Liaoning 116000,China)
机构地区:[1]大连海事大学信息科学技术学院
出 处:《计算机工程与应用》2019年第19期105-114,140,共11页Computer Engineering and Applications
基 金:国家自然科学基金青年基金(No.61602076,No.61702072);中国博士后科学基金面上项目(No.2017M611211,No.2017M621122);中央高校基本科研业务费专项资金(No.3132018191);国家重点研发计划项目(No.2017YFC1404606)
摘 要:离群点检测是数据管理领域中的热点问题之一,在医疗诊断、金融诈骗、环境监测等领域中具有广泛的应用。目前,随着传感器等设备在数据采集方面的应用,人们发现数据的不确定性普遍存在。与确定性数据相比,挖掘出不确定数据集中潜在的富有价值的信息变得十分困难。针对上述问题,提出了一种快速的不确定离群点检测算法FODU(Fast Outlier Detection approach on Uncertain data sets)。采用分层次划分思想给出了索引的构建策略,这种索引结构不仅克服了传统索引对多维数据管理的局限性,而且能够被快速地进行空间剪枝;为了快速地挖掘出不确定离群点,提出了高效的过滤方法。该方法通过批量过滤与单点过滤两个过程减少了大量的冗余计算,从而提高了检测效率,为了避免可能世界的空间膨胀,给出了数据对象离群概率值的计算方法。通过实验验证了所提算法的有效性,结果表明,相对于现有研究,该算法可以显著提高不确定离群点的检测效率。Outlier detection is a hot topic in the field of data management,which has been widely applied to many fields such as medical diagnosis,financial fraud,environment monitoring and many others.At present,along with the application of sensors in data acquisition,people have realized the universality of uncertain data in many fields.Compared with certain data,it is much more difficult to detect outliers on uncertain data sets.To solve the problems,a Fast Outlier Detection approach on Uncertain data sets(FODU)is proposed.Firstly,an index construction strategy inspired by hierarchical ideas is given,which not only overcomes the limitation of the traditional index structure on multi-dimensional data management, but also can prune the searching space quickly.Furthermore,to detect uncertain outliers efficiently,a new filtering algorithm is proposed.Utilizing batch filtering and single point filtering,this approach can reduce redundant calculations and improve inspection efficiency.Then,to avoid the expansion of the possible world,an approach to compute the abnormal probability of data objects is given.At last,the efficiency and effectiveness of the proposed approaches are verified through a series of simulation experiments.The experimental results show that compared with the previous approaches,the proposed algorithm can significantly improve the computation efficiency of outlier detection on uncertain data.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28