基于径向变换和改进AlexNet的胃肿瘤细胞图像识别方法  被引量:5

Gastric tumor cell image recognition method based on radial transformation and improved AlexNet

在线阅读下载全文

作  者:甘岚[1] 郭子涵 王瑶 GAN Lan;GUO Zihan;WANG Yao(School of Information Engineering, East China Jiaotong University, Nanchang Jiangxi330013, China)

机构地区:[1]华东交通大学信息工程学院

出  处:《计算机应用》2019年第10期2923-2929,共7页journal of Computer Applications

基  金:国家自然科学基金资助项目(61861016);江西省教育厅科学技术研究项目(GJJ180317)~~

摘  要:使用AlexNet实现胃肿瘤细胞图像分类时,存在数据集过小和模型收敛速度慢、识别率低的问题。针对上述问题,提出基于径向变换(RT)的数据增强(DA)和改进AlexNet的方法。将原始数据集划分为测试集和训练集,测试集采用剪裁方式增加数据,训练集首先采用剪裁、旋转、翻转和亮度变换得到增强图片集;然后选取其中一部分进行RT处理达到增强效果。此外,采用替换激活函数和归一化层的方式提高AlexNet的收敛速度并提高其泛化性能。实验结果表明,所提方法能以较快的收敛速度和较高的识别准确率实现胃肿瘤细胞图像的识别,在测试集中最高准确率为99.50%,平均准确率为96.69%,癌变、正常和增生三个类别的F1值分别为0.980、0.954和0.958,表明该方法较好地实现了胃肿瘤细胞图像的识别。When using AlexNet to implement image classification of gastric tumor cells, there are problems of small dataset, slow model convergence and low recognition rate. Aiming at the above problems, a Data Augmentation (DA) method based on Radial Transformation (RT) and improved AlexNet was proposed. The original dataset was divided into test set and training set. In the test set, cropping was used to increase the data. In the training set, cropping, rotation, flipping and brightness conversion were employed to obtain the enhanced image set, and then some of them were selected for RT processing to achieve the enhanced effect. In addition, the replacement activation of functions and normalization layers was used to speed up the convergence and improve the generalization performance of AlexNet. Experimental results show that the proposed method can implement the recognition of gastric tumor cell images with faster convergence and higher recognition accuracy. On the test set, the highest accuracy is 99.50% and the average accuracy is 96.69%, and the F1 scores of categories:canceration, normal and hyperplasia are 0.980, 0.954 and 0.958 respectively, indicating that the proposed method can implement the recognition of gastric tumor cell images well.

关 键 词:小样本数据集 数据增强 径向变换 卷积神经网络 胃肿瘤细胞图像识别 

分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象