基于时间序列模型的患者人均医疗费用和药品费用的预测分析  被引量:1

Analysis of Prediction on Per Capita Medical Expenses and Drug Expenses of Patients Based on Time Series Model

在线阅读下载全文

作  者:王华[1] 汤少梁 何光秀 曹春华[1] WANG Hua;TANG Shao-liang;HE Guang-xiu;CAO Chun-hua(Taizhou Hospital of Chinese Medicine,Taizhou,225300,China;School of Health Economics and Management,NanjingUniversity of Chinese Medicine,Nanjing,210023,China)

机构地区:[1]泰州市中医院,江苏泰州225300 [2]南京中医药大学卫生经济管理学院,江苏南京210023

出  处:《南京中医药大学学报(社会科学版)》2019年第3期203-208,共6页Journal of Nanjing University of Traditional Chinese Medicine(Social Science Edition)

基  金:国家自然科学基金(71673148);江苏省社会科学基金(15GLB014);教育部人文社会科学研究规划基金(15YJA630060);江苏省高校哲学社会科学研究重大项目(2018SJZDI074)

摘  要:以江苏省的公立医院改革为例,根据江苏省卫生统计年鉴中2007-2017年综合医院住院患者人均医疗费用和药品费用的数据建立时间序列模型,分析并预测2017年以后的人均医疗费用和药品费用的变化趋势,希望为医疗改革的顺利进行和优化提供思路和建议。研究发现预测值和实际值的差距较小,且平均绝对误差也在可接受范围内。预测结果显示住院患者人均医疗费用逐年增加,药品费用逐步下降。今后仍然需要继续严格推行药品组合政策,建立多元灵活的政府补偿机制,并稳步推进医联体建设,探索互联网智慧医疗新模式。Taking the reform of public hospitals in Jiangsu Province as examples, this papeRestablished a time series model based on the analysis of data of peRcapita medical expenses and drug expenses of inpatients in general hospitals from Jiangsu Health Statistical Yearbook (2007-2017), predicted the changing trend of peRcapita medical expenses and drug expenses after2017, hoping to provide suggestions to promote medical reform to advance smoothly.It was found that the gap between predicted and actual values was small, and the mean absolute erroRwas acceptable.The forecast results showed that inpatients' peRcapita medical expenditure would increase yeaRby year, while the drug expenditure would decreased gradually.So in the future, the drug mix policy needs to be furtheRstrictly implemented.The construction of the pluralistic and flexible government compensation mechanism and the Medical Association should be steadily promoted, as well as the new model of online intelligent medical care.

关 键 词:时间序列模型 人均医疗费用 药品费用 

分 类 号:R19[医药卫生—卫生事业管理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象