空间多关键词Skyline查询算法  被引量:3

Spatial Keywords Skyline Query Algorithm

在线阅读下载全文

作  者:李星罗 秦小麟[1] 王宁[1] 周杨淏 鲍斌国 LI Xing-luo;QIN Xiao-lin;WANG Ning;ZHOU Yang-hao;BAO Bin-guo(College of Computer Science and Technology,Nanjing University of Aeronautics and Astronautics,Nanjing 210016.China)

机构地区:[1]南京航空航天大学计算机技术与科学学院

出  处:《小型微型计算机系统》2019年第10期2175-2181,共7页Journal of Chinese Computer Systems

基  金:国家自然科学基金项目(61373015,61728204)资助

摘  要:近年来,随着用户对于查询偏好性需求的增加,基于关键词的Skyline查询逐渐成为研究热点.针对实际应用中用户从当前空间位置及对象文本属性多角度审视某一数据集的需求,充分研究空间多关键词Skyline查询问题.在分析现有查询算法的不足基础上,建立了基于加权距离的空间文本支配模型,并提出了一种空间文本索引结构STR-Tree.该索引将空间区域信息与区域内的对象文本信息相结合,对查询无关区域进行快速且有效的剪枝.在此基础上,给出了一种空间多关键词Skyline查询算法SKS,通过采用最小值过滤等剪枝策略,进一步提升查询效率.最后,分别采用模拟数据集和真实数据集进行实验,结果表明SKS算法可以高效地处理空间多关键词Skyline查询.In recent years,with the increase of users’ demand for query preference,keyword-based skyline query has gradually become a research hotspot. For practical applications,users need to viewa certain data set from multiple perspectives of current spatial location and object textual attribute,and fully study the query problem of spatial skyline with keywords. Analyzing the shortcomings of existing query algorithms,a spatio-textual dominance model based on weighted distance is established,and a spatio-textual index structure STRTree is proposed. The index combines the spatial region information with the object text information in the region to quickly and effectively prune the irrelevant regions of the query. On this basis,a spatial keywords skyline query algorithm SKS is proposed,which further improves the query efficiency by adopting pruning strategies such as minimum filtering. Finally,the simulation data set and the real data set are respectively used for experiments. The results show that the SKS algorithm can effectively deal with spatial keywords skyline query.

关 键 词:SKYLINE查询 空间关键词 空间文本索引 空间数据库 

分 类 号:TP311[自动化与计算机技术—计算机软件与理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象