基于机器学习的股票特征预测机构持股研究  被引量:2

在线阅读下载全文

作  者:孙世轩 潘格格 

机构地区:[1]天津财经大学统计学院

出  处:《金融经济》2019年第20期37-41,共5页Finance Economy

摘  要:本文基于2006年-2017年沪深300中141支高机构持股比例的股票数据进行实证研究,分析机构增持股的CAR,建立集成SVM,Random Forest,XGBoost三大机器学习算法的多数投票分类器,利用上市公司13个财务和非财务特征数据预测机构投资者在季度末的增减持行为,根据shaply value分析机构持股偏好。结果表明:机构增持股在季度报披露前具有正CAR,分类器增减持分类预测准确率最高达88. 89%,总资产周转率,净资产收益率和市净率对机构持股影响显著。这表明机构增持股能获取超额回报,机构择股能力强,持股行为具有可预测性,持股偏好具有可识别特征。个人投资者可以在季度末利用分类器预测机构持股行为,在季度报披露前跟进以获取超额回报。

关 键 词:超额收益 股票特征 机构持股 机器学习 shaplyvalue 

分 类 号:F832.51[经济管理—金融学] F224

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象