检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]天津财经大学统计学院
出 处:《金融经济》2019年第20期37-41,共5页Finance Economy
摘 要:本文基于2006年-2017年沪深300中141支高机构持股比例的股票数据进行实证研究,分析机构增持股的CAR,建立集成SVM,Random Forest,XGBoost三大机器学习算法的多数投票分类器,利用上市公司13个财务和非财务特征数据预测机构投资者在季度末的增减持行为,根据shaply value分析机构持股偏好。结果表明:机构增持股在季度报披露前具有正CAR,分类器增减持分类预测准确率最高达88. 89%,总资产周转率,净资产收益率和市净率对机构持股影响显著。这表明机构增持股能获取超额回报,机构择股能力强,持股行为具有可预测性,持股偏好具有可识别特征。个人投资者可以在季度末利用分类器预测机构持股行为,在季度报披露前跟进以获取超额回报。
关 键 词:超额收益 股票特征 机构持股 机器学习 shaplyvalue
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.218.231.183