基于BP神经网络的不确定性动态Job-shop调度研究  被引量:2

Research on Uncertainty Dynamic Job-shop Scheduling Based on BP Neural Networks

在线阅读下载全文

作  者:张喆 刘阶萍[1] 张予昊 ZHANG Zhe;LIU Jieping;ZHANG Yuhao(School of Mechanical and Electronic Control Engineering, Beijing Jiaotong University, Beijing 100044, China)

机构地区:[1]北京交通大学机械与电子控制工程学院

出  处:《机械制造与自动化》2019年第5期121-125,139,共6页Machine Building & Automation

摘  要:针对作业车间调度的不确定和动态问题,围绕设备故障、订单追加、紧急订单插入3种典型的不确定性情况提出1种基于BP神经网络的重调度方法。当生产过程中发生不确定性事件对原先调度方案产生巨大扰动时,通过已构建且训练好的BP神经网络快速进行响应并生成1个重调度方案,保证整个生产过程高效、有序、稳定地运行。通过仿真实例验证了可行性。The uncertainty exists in job shop scheduling. It is mainly caused by machine fault, additional order and emergency order insertion. This paper proposes a method of the rescheduling based on BP neural network. When the uncertainty event appears in the production process and it has great influence on the original scheduling, the BP neural network already constructed and trained can be used to quickly generate a re-scheduling scheme which is used to make sure that the effective and smooth operation is guaranteed in the whole production process. The feasibility is verified by the simulation example.

关 键 词:JOB-SHOP调度 不确定性 动态调度 BP神经网络 

分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象