检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:高晓光[1] 李新宇 岳勐琪 张金辉 赵利强[3] 吴高峰 李飞[1] GAO Xiaoguang;LI Xinyu;YUE Mengqi;ZHANG Jinhui;ZHAO Liqiang;WU Gaofeng;LI Fei(School of Electronics and Information,Northwestern Polytechnical University,Xi'an 710072,China;AVIC Luoyang Institute of Electro-Optical Devices,Luoyang 471000,China;China Airborne Missile Academy,Luoyang 471009,China)
机构地区:[1]西北工业大学电子信息学院,西安710072 [2]航空工业洛阳电光设备研究所,洛阳471000 [3]中国空空导弹研究院,洛阳471009
出 处:《航空学报》2019年第9期232-245,共14页Acta Aeronautica et Astronautica Sinica
基 金:国家自然科学基金(61573285)~~
摘 要:目前地空导弹发射区的拟合算法主要是多项式拟合法和BP神经网络拟合法。多项式拟合法存在函数形式难以确定、函数范围不易分段等问题,且拟合精度较低;传统神经网络方法要想达到较高精度,需要大量的隐层节点,且在隐层节点数增加到一定程度后,训练变得十分困难且精度很难继续提高。同时,传统神经网络需要大量的标签数据,进一步增大了实际应用的难度。为此,基于深度学习理论,设计了一种基于堆栈稀疏自编码器(SSAE)的深度拟合网络(DFN),并给出了相应的训练策略。仿真实验表明其相比传统算法具有更小的拟合误差优势。所设计的深度稀疏自编码器网络可以克服多项式拟合和传统神经网络的不足,不仅可以在大量无标签数据和少量标签数据条件下进行学习训练,而且可以进一步提升地空导弹发射区的拟合精度。At present,the fitting algorithm for ground-to-air missile launching areas mainly include the polynomial fitting algorithm and the Back Propagation(BP)neural network fitting method.The former is problematic in that the function form is difficult to determine,the function range is not easy to segment,and the fitting precision is low,whereas the latter requires a large number of hidden layer nodes to achieve higher precision.When the number of hidden layer nodes increases to a certain extent,its training becomes very difficult and its precision is difficult to keep improving.At the same time,traditional neural networks require a large amount of labeled data,which further increases the difficulty of practical applications.So,this paper designs a Stacked Sparse Auto-Encoder(SSAE)Deep Fitting Network(DFN)based on the deep learning theory,and provides the corresponding training strategy.The simulation results show that the proposed design has the advantage of getting lower fitting error compare to traditional methods.The deep sparse auto-encoder network designed in this paper can overcome the shortcomings of polynomial fitting and traditional neural network.This design can learn training with a large amount of unlabeled data and a small amount of tag data,further enhancing the ground-to-air missile launching area fitting accuracy.
关 键 词:地空导弹发射区 神经网络 深度学习 堆栈稀疏自编码器 深度拟合网络
分 类 号:V279[航空宇航科学与技术—飞行器设计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.16.90.150