最小熵基准的并行串级控制系统的性能评估  被引量:6

Performance Assessment of Parallel Cascade Control System Based On Minimum Entropy

在线阅读下载全文

作  者:刘阳[1] 王亚刚[1] LIU Yang;WANG Ya-gang(School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093,China)

机构地区:[1]上海理工大学光电信息与计算机工程学院

出  处:《控制工程》2019年第10期1899-1904,共6页Control Engineering of China

摘  要:串级控制在工业过程中是经常被采用的控制策略,与单回路相比它能够减小最大偏差和积分误差。当前的最小方差性能评估方法都是基于高斯扰动,但在实际生产中,一些扰动并不一定服从高斯分布。对于非高斯的扰动提出基于最小熵的性能评估基准。在随机过程中,信息熵相比均值或者方差对于任意的随机变量具有更为一般的意义。在非高斯噪声的并行串级控制系统中,辨识系统的ARMA模型根据最小熵而不是最小均方误差将更为合适。通过在仿真证明该指标的有效性。Cascade control is a frequently used control strategy in industrial processes. It can reduce the maximum deviation and the integral error compared with the single loop. Currently, the minimum variance method of parallel cascade control system are developed based on the assumption that all the disturbance are subject to Gaussian distribution. However, in the practical condition, some disturbances do not obey the Gaussian distribution. The minimum entropy index of performance assessment of the parallel cascade control system subjected to non-Gaussian disturbances is proposed. In the stochastic process, the information entropy has more general significance than mean or variance for any random variable. The estimated ARMA model for the parallel cascade control loop based on the minimum entropy instead of the minimum mean squares error has better performance for non-Gaussian disturbances. The result of proposed methods are demonstrated through a simulation example.

关 键 词:并行串级控制 性能评估 最小熵 非高斯 

分 类 号:TP14[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象