检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:胡六四[1] HU Liu-si(College of Software,Anhui Vocational College of Electronics & Information Technology ,Bengbu Anhui 233000,China)
机构地区:[1]安徽电子信息职业技术学院软件学院
出 处:《佳木斯大学学报(自然科学版)》2019年第5期752-754,共3页Journal of Jiamusi University:Natural Science Edition
基 金:2019年度安徽高校自然科学研究项目(KJ2019A1067)
摘 要:递归神经网络(RNN)和长短时记忆(LSTM)在处理顺序多媒体数据方面取得显著成就。因此,提出了一种双向长短时记忆的递归神经网络(DLSTM),该方法结合了卷积神经网络(CNN)和递归神经网络的动作识别新方法。首先,利用CNN提取视频的深度特征,构建视频特征模型,以减少冗余和复杂性。然后,利用递归神经网络学习帧特征之间的序列信息。该方法具有学习长序列的能力,能够在一定的时间间隔内通过分析特征来处理较长的视频。实验结果与现有的方法比较,该方法在动作识别方面有明显完善。Recursive neural networks (RNN) and LSTM have achieved great success in processing sequential multimedia data. Therefore, this paper proposes a bidirectional long short time memory based DLSTM, combining convolutional neural network (CNN) and recursive neural network. First, the depth features of video were extracted by CNN and the video feature model was constructed to reduce redundancy and complexity. Then, recursive neural network is used to learn the sequence information between frame features. This method has the ability of learning long sequences and can process long video by analyzing features in a certain time interval. Experimental results show that compared with the existing methods, the proposed method has a significant improvement in motion recognition.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222