一种改进的模块化多电平换流器模型预测控制策略  被引量:2

An improved modular multilevel converter model predictive control strategy

在线阅读下载全文

作  者:龚向阳 蔡振华 谢宇哲 叶夏明 邱云 王宁[2] GONG Xiangyang;CAI Zhenhua;XIE Yuzhe;YE Xiaming;QIU Yun;WANG Ning(Ningbo Power Supply Company,State Grid Zhejiang Electric Power Company,Ningbo,Zhejiang 315000,China;School of Electrical Engineering,Yanshan University,Qinhuangdao,Hebei 066004,China)

机构地区:[1]国网浙江省电力公司宁波供电公司,浙江宁波315000 [2]燕山大学电气工程学院,河北秦皇岛066004

出  处:《燕山大学学报》2019年第5期423-432,共10页Journal of Yanshan University

基  金:国家自然科学基金资助项目(51607153);浙江省电力公司科技项目(5211NB160006)

摘  要:模块化多电平换流器以其高效率、低谐波、开关频率低的特点在高压高功率输配电领域得到了日益广泛的应用。模型预测控制可以控制多个被控变量。传统模型预测控制应用于具有大量子模块的模块化多电平换流器系统时,计算量巨大,无法实现实时控制。本文提出一种基于桶排序的双层模型预测控制方法。对电容电压进行桶排序,将电压排序后的子模块按次序等分为若干组,通过第一层模型预测控制确定需要插入桥臂的组数,再通过第二层模型预测控制进一步确定需要插入的子模块。在PSCAD/EMTDC下搭建模块化多电平换流器仿真系统,验证了所提方法的有效性。Modular multilevel converter has been widely used in the field of high voltage and high power transmission and distribution due to its high efficiency,low harmonics,and low switching frequency.Model predictive control can control multiple controlled variables.When traditional model predictive control is applied to an modular multilevel converter system with a large number of sub-modules,the task of calculation is huge and real-time control cannot be achieved.A two-layer model predictive control method based on bucket ordering is proposed.The capacitor voltage is sorted,and the voltage-sequenced sub-modules are divided into several groups in order,and the first layer model predictive control determines which groups need to be inserted into the arm and further determines which sub-modules to insert through the second layer model predictive control.The modular multilevel converter simulation system was built under PSCAD/EMTDC to verify the effectiveness of the proposed method.

关 键 词:换流器 模块化多电平 模型预测控制 桶排序 

分 类 号:TM46[电气工程—电器]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象