检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:蒋蓓蓓 张亚平 张琳[1] 刘桂雪 解学乾[1] JIANG Bei-bei;ZHANG Ya-ping;ZHANG Lin;LIU Gui-xue;XIE Xue-qian(Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China)
机构地区:[1]上海交通大学附属第一人民医院放射科
出 处:《上海交通大学学报(医学版)》2019年第9期1045-1051,1045,共7页Journal of Shanghai Jiao tong University:Medical Science
基 金:科技部国际合作项目(2016YFE0103000);上海市教育委员会高峰高原学科建设计划(20181814);上海市科学技术委员会项目(16411968500,16410722300);上海交通大学转化医学交叉研究基金(ZH2018ZDB10);上海市第一人民医院临床研究创新团队建设项目(CTCCR-2018B04)~~
摘 要:目的·研究卷积神经网络(convolutional neural network,CNN)根据CT 图像对≤ 3cm 的亚实性肺腺癌病理分类的可行性,并通过CNN 激活区可视化分析预测分类的医学影像基础。方法·随机纳入200 个经免疫组化染色证实为肺腺癌的亚实性肺结节,标注为浸润前病变(含非典型腺瘤样增生和原位腺癌)、微浸润腺癌和浸润性腺癌。160 个(80%)用于训练CNN 模型,40 个(20%)用于模型验证和激活区可视化分析。激活区的影像特征定义为14 种CT 征象。结果· CNN 对肺腺癌病理分类的准确性为87.5%。可视化分析发现CNN 激活区主要关注浸润前病变的非实性成分(43.0%)和光滑边缘(20.2%),关注微浸润腺癌的毛刺边缘(18.3%),关注浸润性腺癌的实性成分(18.9%)和毛刺边缘(14.1%)。结论· CNN 能根据CT 图像对肺腺癌病理分型进行分类预测,CNN 激活区的可视化能提示诊断的医学影像基础。Objective · To investigate the feasibility of deep convolutional neural network (CNN) to classify the pathological type of sub-soild pulmonary adenocarcinoma of ≤ 3 cm based on CT images, and to visualize the medical imaging features derived from the activation area of CNN. Methods · A total of 200 sub-solid lung nodules, which were confirmed as adenocarcinoma by immunohistochemical staining, were classified as preinvasive lesions (including atypical adenomatous hyperplasia and adenocarcinoma in situ), microinvasive adenocarcinoma and invasive adenocarcinoma, in which 160 (80%) were used to train the inception v3 CNN architecture, and the other 40 (20%) were used to test the model and visualize the activation area. The characteristics of the activated area were defined as 14 CT signs. Results · The CNN yielded an accuracy of 87.5% to classify three categories of lung nodules. The visualization study found that the CNN activation area mainly focused on the non-solid component (43.0%) and smooth margin (20.2%) of the preinvasive lesions, on the spiculated margin (18.3%) of the microinvasive adenocarcinoma, and on the solid component (18.9%) and the spiculated margin (14.1%) of the invasive adenocarcinoma. Conclusion · CNN can classify the pathological type of lung adenocarcinoma based on CT images. The visualization of activation area of CNN indicates the medical imaging characteristics of diagnosis.
分 类 号:R445.4[医药卫生—影像医学与核医学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229