基于SURF特征的枪弹痕迹匹配方法  被引量:5

Bullet scrapping matching method based on SURF feature

在线阅读下载全文

作  者:李赵春[1] 周骏 张浩 殷旭阳 LI Zhaochun;ZHOU Jun;ZHANG Hao;YIN Xuyang(School of Mechanical and Electronic Engineering,Nanjing Forestry University,Nanjing 210037,China;School of Mechanical and Power Engineering,Nanjing Tech University,Nanjing 211800,China)

机构地区:[1]南京林业大学机械电子工程学院,江苏南京210037 [2]南京工业大学机械与动力工程学院,江苏南京211800

出  处:《传感器与微系统》2019年第11期35-38,共4页Transducer and Microsystem Technologies

基  金:国家自然科学基金资助项目(E051101,51205211)

摘  要:为实现枪弹痕迹的自动比对与识别,提出将特征识别加速鲁棒特征(SURF)算法引入到弹壳痕迹匹配研究中,利用该算法提取弹底窝痕三维表面形貌特征,并采用随机抽样一致性(RANSAC)算法实现匹配优化。重点讨论了SURF特征点检测中参数调整及匹配效果关系,并借助美国国家标准与技术研究院(NIST)提供的弹底窝痕测试样本实现了最佳参数及识别条件的认定。实验结果表明,SURF算法对弹底窝痕表面形貌特征的提取与描述优异,在测试样本上可达到90 %以上的匹配率。In order to achieve automated identification of the ballistics signatures,speeded-up robust features(SURF)and related algorithms are introduced into the feature matching implementation on cartridge case impressions.SURF is applied to extract three-dimensional(3D)topography features of breech face impression, and random sample consensus(RANSAC)algorithm is adopted to complete further matching optimization.The relationship between parameter adjustment in SURF keypoints detection and final matching result is mainly discussed,and the optimal parameters and identification conditions are verified with the help of the test samples provided by the National Institute of Standards and Technology(NIST)of USA.The experimental results strongly support the effectiveness of SURF algorithm on feature extraction and description of 3D breech face impressions, and indicate a matching rate of more than 90 % on the test samples.

关 键 词:枪弹痕迹 特征提取 弹底窝痕 痕迹匹配 SURF 参数配置 

分 类 号:TP391.4[自动化与计算机技术—计算机应用技术] TP212[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象