检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]海军工程大学电子工程学院,南京211800 [2]哈尔滨工程大学水声研究所,哈尔滨150001
出 处:《声学学报》2002年第6期497-501,共5页Acta Acustica
基 金:国家自然科学基金资助课题
摘 要:用非线性动力学的理论方法分析实验水池混响、湖水混响以及海洋混响时间序列,以检验记录的混响过程是否能用低维非线性动力学建模,以及是否存在混沌属性。被分析数据采自不同的地理位置、不同的底质和水文环境,对应不同的声源,有一定的代表性。分析结果表明混响可在低至4维的动力学空间中展现不自交的动力学轨道,相近轨道按指数规律扩展或敛聚,其最大 Lyapunov指数是正的且小于0.3。这个结果为混响的非线性动力学建模和基于混沌的非线性处理奠定基础。Reverberation time series recorded in laboratory cistern, lake field and sea field have been examined by nonlinear dynamical methods, in order to identify chaos characteristic from its random-like waveform and to modeling them by low dimensions nonlinear dynamics. The data we analyzed are related to many geographic locations, bottom types, underwater conditions and transmitted signals. The results indicate that the reverberation can be modeled as 4-dimensions dynamical system with a positive maximum Lyapunov exponent (0 < λ1 < 0.3), so it may reveal a new approach based on chaos to process reverberation time series.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3