检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]安徽商贸职业技术学院
出 处:《电脑知识与技术》2019年第7期198-200,共3页Computer Knowledge and Technology
基 金:安徽商贸职业技术学院“三平台两基地”应用研究项目《基于Unity 3D技术的VR仿真实训系统开发》项目批号(2019ZDX04);安徽商贸职业技术学院“三平台两基地”应用研究项目《基于人工智能的课堂教学管理系统研究》项目批号(2019ZDX07);安徽省大规模在线开放课程《Photoshop应用》(项目号:2016mooc163);安徽省大规模在线开放课程《Flash动画制作》(项目号:2015mooc163);安徽省数字媒体校园创客空间创客实验室(项目号:2016ckjh086)
摘 要:论文通过对目前国内外主流人脸检测的算法进行比较研究,探讨如何提高人脸识别算法的精确度和检测速度,为国内开发各类人脸识别系统提供参考,主要是通过分析以肤色特征为主的人脸检测法,了解其计算过程和原理,对其拥有的色彩空间、预处理人脸图像检测技术以及依据人脸特点建立相应的肤色模型等算法、检测技术进行深度分析。通过研究,笔者认为在社会经济发展中,人脸检测应用比较广泛,相较之其他识别人体生物的系统,人脸识别方式更加直接与友好,已成为未来识别认证身份的一种重要发展趋势。以肤色特征为主的人脸检测法,不仅色彩空间广,且运用了综合检测技术,提高了检测精确度,检测速度也更加快捷,主流人脸检测算法均有各自的特性,但总体而言,建立在脸部肤色特点基础上的人脸检测技术与综合检测技术相结合,不仅能够有效提高肤色检测技术的准确率,还可以极大地提高Adaboost算法的检测速度与效率,使用比较广泛。
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.195