检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张鑫 郭顺生[1,2] 江丽[1,2] ZHANG Xin;GUO Shunsheng;JIANG Li(School of Mechanical and Electronic Engineering,Wuhan University of Technology,Wuhan 430070,China;Hubei Digital Manufacturing Key Laboratory,Wuhan University of Technology,Wuhan 430070,China)
机构地区:[1]武汉理工大学机电工程学院,武汉430070 [2]武汉理工大学湖北省数字制造重点实验室,武汉430070
出 处:《振动与冲击》2019年第16期93-99,共7页Journal of Vibration and Shock
基 金:中央高校基本科研业务费专项资金(2018IVA022);国家自然科学基金(51705386;51705385);湖北省科技支撑计划项目(2015BAA063;2014BAA032)
摘 要:为充分利用少量有标记样本蕴含的重要信息,在拉普拉斯特征映射(LE)算法基础上,对标记样本点进行置信度约束,提出了改进的LE算法及基于该算法的半监督故障诊断模型。该模型采用改进的LE算法,直接从原始高维振动信号中提取最敏感的低维流形特征,随后将其输入到基于约束种子K均值算法构建的分类器,从而以可视化的聚类结果标识机械设备的运行状态。与核主成分分析、核判别分析等经典算法进行比较,该模型能明显提高轴承故障类型和滚动体故障严重性的识别性能。Aiming at making full use of the important messages contained in a small number of marked samples.The Laplacian eigenmap(LE)algorithm was improved by implementing confidence constraints on marked sample points.The semi-supervised fault diagnosis model based on the improved LE algorithm was presented.This model utilized the improved LE algorithm to extract the most sensitive low-dimensional manifold features from the raw high-dimensional vibration signals directly.Subsequently,they were fed into the classifier based on the constraint seed K-means algorithm.Thus,the operating conditions of mechanical equipment were identified by visual clustering results.Compared with the Kernel principal component analysis and the Kernel discriminant analysis,the model obviously improves the recognition performance of bearing fault types and ball fault severities.
关 键 词:半监督 拉普拉斯特征映射(LE) 约束种子K均值 故障诊断
分 类 号:TH133.3[机械工程—机械制造及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222