检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:屈景怡[1] 叶萌 曹磊 Qu Jingyi;Ye Meng;Cao Lei(Tianjin Key Laboratory of Advanced Signal Processing,Civil Aviation University of China,Tianjin 300300,China)
机构地区:[1]中国民航大学天津市智能信号与图像处理重点实验室
出 处:《信号处理》2019年第7期1160-1169,共10页Journal of Signal Processing
基 金:国家自然科学基金联合基金项目(U1833105);天津市智能信号与图像处理重点实验室开放基金项目(2017ASP-TJ01);中央高校基本科研业务费中国民航大学专项资助项目(3122018D006)
摘 要:为充分利用机场延误状态信息的时间相关性,提高机场延误预测精度,提出一种基于混合编码和长短时记忆网络(Long Short Term Memory,LSTM)的机场延误预测方法。该方法首先将机场信息、航班信息和气象信息进行数据预处理,得到机场延误数据;然后,利用LSTM网络对机场延误数据进行特征提取;最后,构建Softmax分类器对机场延误分类预测。实验结果表明,本文基于机场延误数据在数据预处理阶段提出的混合编码方法,可使预测准确率提高约5%。同时,利用LSTM网络来提取数据的时间相关特征信息,网络模型的预测准确率最终可达94.01%。并且利用不同机场数据对网络的普适性分析结果表明,该算法更适合于原始数据量大的中大型枢纽机场。In order to make full use of the time correlation of airport delay status information and improve the accuracy of airport delay prediction,an airport delay prediction method based on hybrid coding and Long Short Term Memory(LSTM)network is proposed.The method firstly preprocesses the airport’s information,meteorological information and flight information to obtain the airport delay data.Then,the LSTM network is used to extract the feature of the airport delay data.Finally,the Softmax classifier is constructed to predict the classification of airport delays.The experiments results show that the hybrid coding method proposed in the data preprocessing stage based on airport delay data can improve the prediction accuracy by about 5%.Moreover,when the LSTM network is used to extract the time-related feature information of the data,the prediction accuracy of the LSTM network model is up to 94.01%.And the analysis of the universality of the network using different airport data shows that the algorithm is more suitable for medium and large hub airports with large amount of original data.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7