检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:黄磊[1,2] 李晓鹏 黄敏[1,2] 李强[1,2] 赵博[1,2] 孙维泽[1,2] 张沛昌 HUANG Lei;LI Xiaopeng;HUANG Min;LI Qiang;ZHAO Bo;SUN Weize;ZHANG Peichang(College of Electronics and Information Engineering,Shenzhen University,Shenzhen 518060,Guangdong Province,P.R.China;Guangdong Provincial(SZU-DAS)Positioning&Sensing Engineering Technology Research Center,Shenzhen University,Shenzhen 518060,Guangdong Province,P.R.China)
机构地区:[1]深圳大学电子与信息工程学院,广东深圳518060 [2]广东省(深圳大学-达实智能)位置感知与探测工程技术研究中心,广东深圳518060
出 处:《深圳大学学报(理工版)》2019年第5期473-481,共9页Journal of Shenzhen University(Science and Engineering)
基 金:国家自然科学基金资助项目(U1713217,U1501253)~~
摘 要:随着无人机(unmanned aerial vehicle,UAV)的广泛应用,其与地面接收站实时共享机载传感器数据成为工业界的迫切需求.然而,目前为无人机开放使用的频谱资源稀缺,通信信道带宽非常有限,这就促使人们研究如何在带宽受限条件下实现无人机数据的实时无损回传.作为突破经典奈奎斯特(Nyquist)采样理论的新技术,压缩采样将是解决这类问题的最佳方案.本文通过对比当前无人机通信技术核心参数,揭示现有通信技术标准无法满足无人机数据通信对信道带宽日益迫切的需求,评述无人机数据回传压缩技术,对压缩感知、1-bit压缩采样、相位恢复和矩阵补全技术原理进行回顾.采用压缩感知和矩阵补全技术对实测数据进行验证,结果表明,压缩感知和矩阵补全技术可在带宽不变的情况下,显著降低数据的传输时间.最后提出无人机数据压缩和恢复领域的4个研究发展方向.With the widespread application of unmanned aerial vehicle(UAV),the real-time sharing of data between UAV and base station has become an urgent demand in industry.However,the spectrum resources available for UAV data transmission are extremely precious,resulting in rather limited channel bandwidth.This,in turn,motives ones to explore efficient technologies for real-time non-destructive backhaul of drone data under bandwidth-constrained conditions.As a new technology breaking through the classical Nyquist sampling theorem,the compressive sampling(CS)turns out to be a promising solution to the aforementioned problem.By comparing the core parameters of current UAV communication technologies,this paper reveals that the existing standards of communications cannot meet the increasing requirements of UAV data transmission.Subsequently,four representative CS techniques,including compressed sensing,one-bit compressed sampling,phase retrieval and matrix completion,are briefly reviewed.Then,the simulations of compressed sensing and matrix completion technologies with real-world data are carried out to demonstrate the effectiveness which reveals that compressed sensing and matrix completion methods are able to significantly reduce the transmission time of data backhaul without changing the bandwidth.Ultimately,this paper also describes four research and development directions in the field of UAV data compression and recovery.
关 键 词:无人机 压缩采样 带宽受限 数据回传 图像处理 1-bit压缩采样 矩阵补全
分 类 号:TN919[电子电信—通信与信息系统] V279[电子电信—信息与通信工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28