基于Cygwin和虚拟机技术的大数据实验室建设研究  被引量:4

Research on big data lab construction based on Cygwin and virtual machine technology

在线阅读下载全文

作  者:应毅[1] 任凯[2] 刘亚军[3] YING Yi;REN Kai;LIU Ya-jun(College of Computer Science and Technology,Sanjiang University,Nanjing 210012,China;Jinling College,Nanjing University,Nanjing 210089,China;School of Computer Science and Engineering,Southeast University,Nanjing 210096,China)

机构地区:[1]三江学院计算机科学与工程学院,江苏南京210012 [2]南京大学金陵学院,江苏南京210089 [3]东南大学计算机科学与工程学院,江苏南京210096

出  处:《实验室科学》2019年第4期174-178,181,共6页Laboratory Science

基  金:江苏省高校自然科学研究基金项目(项目编号:17KJB520033);江苏省教育科学“十二五”规划高教立项课题(项目编号:D/2015/01/146);江苏省现代教育技术研究重点课题(项目编号:2015-R-42743)

摘  要:目前大数据人才培养在国内外高校开始普及,但大数据实验室的几种常用建设方法都存在着诸多问题。新的解决方案提出如下:建立基于Cygwin的单节点Hadoop,建立基于虚拟机技术的Hadoop集群,两种互补的Hadoop环境用于完成安装、配置、管理等入门型实验和程序开发、并行计算等进阶型实验。该方案无需额外购置设备,节省实验室资金,同时未增加机房维护工作量,提高机房可复用性,而且实验教学效果良好,为地方高校的大数据实验室建设提供了有益的思路并起到推广作用。Nowadays,the cultivation of big data talents has been popularized both at domestic and foreign universities.But there are many problems in common method of building big data laboratory.So a new way was presented in this article to solve this problem.Setting up a group of complementary Hadoop environments-Single-node Hadoop based on Cygwin is used to complete the introductory experiments,such as installation,configuration,management and Hadoop cluster based on virtual machine technology is used to perform advanced experiments,such as program development,parallel computing.This program does not need to purchase additional equipments or increase maintenance workload,which may significantly save the construction cost of a laboratory building and improve the reusability of the lab.Moreover,it has been proved to be effective and productive and the most important is to provide beneficial idea to big data laboratory construction of local colleges and universities.

关 键 词:大数据实验室 虚拟机技术 LINUX操作系统 HADOOP 

分 类 号:G482[文化科学—教育学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象