大数据驱动情景下企业跨边界知识网络生态系统建构——来自杭州互联网企业的多案例文本挖掘  被引量:1

Ecosystem Construction of Firm Cross-Border Knowledge Networks in Big Data-Driven Context——a Multi-Case Text Mining based on Hangzhou Internet Industry

在线阅读下载全文

作  者:李文博 许秀玲[2] Li Wenbo;Xu Xiuling(College of Economics and Management,Zhejiang Normal University;College of Mathematics,Physics and Information Engineering,Zhejiang Normal University,Jinhua 321004,China)

机构地区:[1]浙江师范大学经济与管理学院 [2]浙江师范大学数理与信息工程学院,浙江金华321004

出  处:《科技进步与对策》2019年第19期109-115,共7页Science & Technology Progress and Policy

基  金:浙江省哲学社会科学规划项目(19NDJC248YB);浙江省自然科学基金项目(LY17G020010; LY18G030022)

摘  要:大数据驱动情景下企业跨边界知识网络研究日益受到各领域学者的关注,其中,生态系统建构是基础性问题。运用文本挖掘方法,基于杭州互联网企业的多案例调研,系统研究大数据驱动情景下企业跨边界知识网络生态系统建构问题。文本挖掘的故事线可提炼为“驱动→建构→跨越”,对应的两类关系路径分别是“大数据驱动情景→生态系统建构”和“生态系统建构→跨边界知识网络”。据此,得到集合互惠共生、开放协同、生态网络和价值治理4个主范畴理论模型,丰富了跨边界知识网络理论,并对企业生态系统构建具有指导价值。The study of cross-border knowledge networks in big data-driven context has attracted more and more attention from scholars in various fields,among which the construction of ecosystems is one of the fundamental issues.Based on the multi-case study of Hangzhou Internet enterprises,this paper systematically refines the problem of ecosystem construction of firm cross-border knowledge network in big-data-driven context by text mining.The storyline of text mining is refined as"drive-construction-leapfrogging",and the corresponding two kinds of relationship paths are"big data-driven context→ecosystem construction"and"ecosystem construction→cross-border knowledge network".Accordingly,the theory model of four main categories of reciprocal symbiosis,open cooperation,ecological network and value governance is obtained.The research enriches the theory of cross-border knowledge network and has guiding value for the construction of enterprise ecosystem.

关 键 词:跨边界知识网络 生态系统建构 大数据驱动 文本挖掘 

分 类 号:F272.4[经济管理—企业管理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象