检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:周福星 陈秀真[1,2] 马进[1,2] 李生红[1,2] ZHOU Fuxing;CHEN Xiuzhen;MA Jin;LI Shenghong(School of Cyber Science and Engineering,Shanghai Jiao Tong University,Shanghai 200240,China;Shanghai Key Laboratory of Integrated Administration Technologies for Information Security,Shanghai 200240,China)
机构地区:[1]上海交通大学网络空间安全学院,上海200240 [2]上海市信息安全综合管理技术研究重点实验室,上海200240
出 处:《计算机工程》2019年第10期283-287,共5页Computer Engineering
基 金:国家自然科学基金(61562004,61431008);国家重点研发计划“网络空间安全”(2016YFB0801003)
摘 要:由于微博文本的长度较短,直接使用隐狄利克雷分布(LDA)模型会导致特征向量高维稀疏。为此,提出一种融合标签语义的热点话题挖掘方法。利用公共块算法计算微博标签的相似度,合并标签相似度较高的微博文本。采用LDA模型对合并后的文本建模,并通过K-means聚类算法挖掘微博热点话题。实验结果表明,与针对单一微博文本建模的方法以及直接合并相同标签的方法相比,该方法的困惑度较低,挖掘热点话题的准确性较高。Due to the short length of the microblog text,the direct use of Latent Dirichlet Allocation(LDA)model will lead to high-dimensional sparse feature vectors.Thus,a hot topic mining method integrating tag semantics is proposed.The common block algorithm is used to calculate the similarity of the microblog tags,and the microblog texts with high tag similarity are combined.The merged text is modeled by LDA model,and the hot topic of microblog is mined by K-means clustering algorithm.Experimental results show that compared with the method of modeling a single microblog text and the method of directly merging the same label,the proposed method obtains a lower perplexity and a higher accuracy in mining topics.
关 键 词:微博文本 隐狄利克雷分布模型 标签语义 公共块 K-MEANS聚类
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229