基于CSD-ELM的不平衡数据分类算法  被引量:6

Imbalanced Data Classification Algorithm Based on CSD-ELM

在线阅读下载全文

作  者:王大飞 解武杰[2] 董文瀚[2] WANG Dafei;XIE Wujie;DONG Wenhan(Graduate School,Air Force Engineering University,Xi'an 710038,China;College of Aeronautics Engineering,Air Force Engineering University,Xi'an 710038,China)

机构地区:[1]空军工程大学研究生院,西安710038 [2]空军工程大学航空工程学院,西安710038

出  处:《计算机工程》2019年第11期54-61,共8页Computer Engineering

基  金:航空科学基金(20141396012)

摘  要:基于代价敏感学习的极限学习机(ELM)算法在处理不平衡数据分类问题时,未考虑不同类别样本的分布特点以及同一类别中各样本的重要性对分类结果的影响。为此,提出基于样本数量比例的错分惩罚因子设置方法,并基于Mini-batch k-means聚类与距离测度设计一种类内样本权值确定方案。在此基础上,构建区分正、负类别的隐含层输出矩阵,根据训练样本数与ELM隐含层节点数间的关系,分2种情况计算ELM隐含层与输出层间的连接权值,以降低算法的时间复杂度。实验结果表明,与ELM、WELM等算法相比,该算法的G-mean、F1分类性能指标值均较高。The Extreme Learning Machine(ELM)based on cost-sensitive learning has its advantages in dealing with imbalanced data classification problems.However,it fails to consider the distribution characteristics of samples in different classes and the importance of each sample in the same class,both of which can have influence on the classification results.Therefore,we propose a setting method for misclassified penalty factor based on the proportion of sample size.Besides,based on Mini-batch k-means clustering and distance measure,we propose a determination method for the weights of samples in the same class.On this basis,we build the output matrix of the hidden layer to distinguish the positive and negative categories.According to the relationship between the size of training samples and the number of nodes in the ELM hidden layer,we calculate the connection weights between the hidden layer and the output layer of ELM in two conditions,thus reducing the time complexity of the algorithm.Experimental results show that compared with ELM,WELM and other algorithms,the proposed algorithm has higher G-mean and F1 classification performance index.

关 键 词:不平衡数据 极限学习机 代价敏感学习 Mini-batch K-MEANS聚类 约束优化理论 

分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象