检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:田莉莉 邹俊忠[1] 张见[1] 卫作臣 汪春梅[2] TIAN Lili;ZOU Junzhong;ZHANG Jian;WEI Zuochen;WANG Chunmei(Department of Automation,School of Information Science and Engineering,East China University of Science and Technology,Shanghai 200237,China;Department of Automation,School of Information Mechanical and Electrical Engineering,Shanghai Normal University,Shanghai 200234,China)
机构地区:[1]华东理工大学信息科学与工程学院自动化系,上海200237 [2]上海师范大学信息与机电工程学院自动化系,上海200234
出 处:《计算机工程与应用》2019年第22期99-105,共7页Computer Engineering and Applications
基 金:国家自然科学基金(No.61071085)
摘 要:针对传统机器学习需要人工构建特征及特征质量较低等问题,提出一种新颖的基于一维卷积神经网络(Convolutional Neural Network,CNN)的特征提取方法。采用编码思想,由卷积层和下采样层构成编码器网络提取脑电信号情感特征,随后与特征图一起输入Leaky ReLU激活函数。对于卷积预训练过程,使用交叉熵和正则化项双目标优化损失函数,之后采用随机森林分类器以获得情感分类标签。在国际公开数据集SEED上进行实验,达到94.7%的情感分类准确率,实验结果表明了该方法的有效性和鲁棒性。Considering that traditional machine learning requires artificial construction features and low feature quality,this paper proposes a novel automatic feature extraction approach in Electroencephalograph(EEG)signals based on 1-D Convolutional Neural Network(CNN). This approach uses the idea of compilation, at the same time the convolutional layer and the downsampling layer form the encoder network to extract the emotional characteristics of the EEG signal, then the Leaky ReLU activation function is applied to the feature map. For the convolution pre-training process, the cross-entropy and regularization terms are used to optimize the loss function, then the random forest classifier is used to obtain the emotion classification label. Finally, the experiment is carried out on the international public data set SEED, which achieves 94.7% sentiment classification accuracy, and the experimental results show the effectiveness and robustness of the proposed method.
关 键 词:脑电信号(EEG) 特征提取 卷积神经网络(CNN) 随机森林 损失函数
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.143.111.52