Extended Balanced Scheduler with Clustering and Replication for Data Intensive Scientific Workflow Applications in Cloud Computing  

在线阅读下载全文

作  者:Satwinder Kaur Mehak Aggarwal 

机构地区:[1]Lala Lajpat Rai Institute of Engineering and Technology,Moga,India

出  处:《Journal of Electronic Research and Application》2018年第3期8-15,共8页电子研究与应用

摘  要:Cloud computing is an advance computing model using which several applications,data and countless IT services are provided over the Internet.Task scheduling plays a crucial role in cloud computing systems.The issue of task scheduling can be viewed as the finding or searching an optimal mapping/assignment of set of subtasks of different tasks over the available set of resources so that we can achieve the desired goals for tasks.With the enlargement of users of cloud the tasks need to be scheduled.Cloud’s performance depends on the task scheduling algorithms used.Numerous algorithms have been submitted in the past to solve the task scheduling problem for heterogeneous network of computers.The existing research work proposes different methods for data intensive applications which are energy and deadline aware task scheduling method.As scientific workflow is combination of fine grain and coarse grain task.Every task scheduled to VM has system overhead.If multiple fine grain task are executing in scientific workflow,it increase the scheduling overhead.To overcome the scheduling overhead,multiple small tasks has been combined to large task,which decrease the scheduling overhead and improve the execution time of the workflow.Horizontal clustering has been used to cluster the fine grained task further replication technique has been combined.The proposed scheduling algorithm improves the performance metrics such as execution time and cost.Further this research can be extended with improved clustering technique and replication methods.

关 键 词:SCIENTIFIC WORKFLOW cloud computing REPLICATION CLUSTERING scheduling 

分 类 号:TP3[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象