检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:邢一鸣[1,2] 班晓娟 刘旭[1] 尹航[2] 沈晴 XING Yi-ming;BAN Xiao-juan;LIU Xu;YIN Hang;SHEN Qing(School of Computer and Communication Engineering,University of Science and Technology,Beijing 100086,China;Engineering Training Center,Shenyang Aerospace University,Shenyang 110136,China)
机构地区:[1]北京科技大学计算机与通信工程学院,北京100086 [2]沈阳航空航天大学工程训练中心,沈阳110136
出 处:《计算机科学》2019年第11期241-246,共6页Computer Science
基 金:国家重点研发计划(2016YFB0700500);国家自然科学基金项目(61702036,61572075);国家航空科学基金项目(2015ZB54007);辽宁省教育厅科学研究项目(L201627)资助
摘 要:城市交通拥堵预测是智能交通系统研究的重要内容之一。交通运行状态具有高度不确定性和复杂性,目前已经有多种基于神经网络的预测技术被引入交通预测领域中。然而,传统的神经网络具有训练时间长、易陷入过拟合和局部最优等缺点,这严重阻碍了神经网络在交通预测领域的大规模应用。超限学习机是一种新型的单隐层前馈神经网络,具有泛化能力强、训练速度快、产生唯一最优解等诸多优点。基于超限学习机算法,文中提出了核超限学习机群组算法,此算法由多个超限学习机子模型组成,每个子模型只负责某一类样本的学习,该算法使每一类样本均能达到全局最优,整体可以获得比超限学习机更高的预测准确率。实验结果表明,单进程的核超限学习机群组算法比超限学习机的训练时间稍短,但前者的准确率较后者提高了8%;相比其他流行的机器学习算法,核超限学习机群组算法的训练速度快、预测准确度高;经过核超限学习机群组算法预测的结果与实际情况较为符合,可靠性高,具有很强的实用价值。Prediction of urban traffic congestion is one of the important research contents of intelligent transportation system(ITS).At present,a lot of neural networks are introduced into the field of traffic forecasting and are widely used.However,the traditional neural network training is time-consuming,easy to fall into local optimal and over fitting.It has seriously hindered the large-scale application of neural network in the field of traffic forecasting.ELM is a new kind of single hidden layer feed-forward neural network,which has the advantages of fast training spead,strong genera-lization ability and unique optimal solution.In this paper,the new algorithm named KELM-Group was proposed,which is composed of multiple KELM sub-models.KELM-Group algorithm enables each class of samples to achieve the global optimum,and the overall prediction accuracy can be higher than that of ELM.The experimental results show that the KELM-Group algorithm is faster than other popular machine learning algorithms.The accuracy rate of KELM-Group algorithm is 8%higher than that of the ELM.The results predicted by the KELM-Group algorithm are more consistent with the actual situation,and have great practical value.
分 类 号:TP399[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222