抗冲激噪声的核分式低次幂自适应滤波算法  被引量:3

Kernel Fractional Lower Power Adaptive Filtering Algorithm Against Impulsive Noise

在线阅读下载全文

作  者:董庆 林云 DONG Qing;LIN Yun(College of Optoelectronic Engineering,Chongqing University of Posts and Telecommunications,Chongqing 400065,China)

机构地区:[1]重庆邮电大学光电工程学院

出  处:《计算机科学》2019年第S11期80-82,共3页Computer Science

摘  要:文中提出了一种基于分数低阶统计误差准则的抗非高斯冲激噪声的核分式低次幂(KFLP)算法。在存在脉冲干扰的环境下,该算法利用权重更新公式中存在瞬时估计误差的倒数系数的有利特性,使得算法在瞬时估计误差突然增大时的权重向量自动停止更新,由此消除了脉冲干扰对权重向量的影响。仿真结果表明,在相同的冲激噪声环境下,随着代价函数的幂次逐渐趋近于1,核分式低次幂算法的稳定性将得到进一步的提高。另一方面,在非高斯脉冲环境下与采用传统的均方误差准则的核最小均方(Kernel Least-Mean-Square,KLMS)算法相比,所提算法的收敛曲线更加平滑,性能更加稳定。To filter out the non-Gaussian impulsive noises,a kernel fractional lower power(KFLP)algorithm based on the fractional lower order statistics error criterion was proposed.Due to the favorable characteristics of the fractional lower order power coefficient of reciprocal,the adaptive update of the weight vector will stop automatically in the pre-sence of impulsive interference.Thus,the effect of updating the weight vector caused by the impulse interference is eliminated.Simulation results show that as the power of the cost function approaches unity,the robustness of the kernel-type low-power algorithm improves in the non-Gaussian impulsive environment.Moreover,compared with the kernel least-mean-square(KLMS)algorithm based on the mean square error criterion,the proposed algorithm has smoother convergence curve and more stable performance.

关 键 词:分数低阶统计误差准则 非高斯冲激噪声 核分式低次幂算法 均方误差准则 核最小均方算法 

分 类 号:TP911[自动化与计算机技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象