Stationary distribution and periodic solution of stochastic chemostat models with single-species growth on two nutrients  被引量:1

在线阅读下载全文

作  者:Miaomiao Gao Daqing Jiang Taxawar Haya 

机构地区:[1]College of Science,China University o/Petroleum(Haul China)Qingdao 266580,P.R.China [2]Keg laboratory of Unconventional Oil and Cos Development China University of Petroleum(East China)Ministry of Education.Qingdao 260580.P.It.China [3]Nonlinear Analysis and Applied Mathematics(NAAM)-Research Group Department of Mathematics.King Abdulaziz University Jeddah 21589,Saudi Arabia [4]Department of Mathematics,Quaid-I-Azam University 45320 Islamabad 44000.Pakistan

出  处:《International Journal of Biomathematics》2019年第6期23-41,共19页生物数学学报(英文版)

基  金:the National Natural Science Foundation of P.R.China(No.11871473).

摘  要:In this paper,we consider two chemostat models w th random perturbation,in which single species depends on two perfectly substitutable resources for growth.For the autonomous system,we first prove that the solution of the system is positive and global.Then we establish sufficient conditions for the existence of an ergodic stationary distribu tion by constructing appropriate Lyapunov functions-For the non-autonomous system,by using Mas'minskii theory on periodic Markov processes,we derive it admits a nontriv ial positive periodic solution.Finally,numerical simulations are carried out to illustrate our main results.

关 键 词:CHEMOSTAT model LYAPUNOV function STATIONARY distribution MARKOV pro cess periodic solution. 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象