石河子地区前列腺穿刺活检阳性预测模型的临床应用分析  

Clinical Application Analysis of Positive Predictive Model for Prostate Biopsy in Shihezi Area

在线阅读下载全文

作  者:王哲 王勤章[1] 钱彪[1] 龙柏川 李应龙[1] 王新敏[1] WANG Zhe;WANG Qin-zhang;QIAN Biao;LONG Bai-chuan;LI Ying-long;WANG Xin-min(Urology Department,Shihezi University,Medical College the First Affiliated Hospital,Shihezi,Xinjiang,832000;Urology Department,Xinjiang Shihezi Economic and Technological Development Zone Hospital Shihezi,Xinjiang/832000)

机构地区:[1]石河子大学医学院第一附属医院泌尿外科,新疆石河子832000 [2]新疆石河子市经济技术开发区医院泌尿外科,新疆石河子832000

出  处:《智慧健康》2019年第30期61-63,共3页Smart Healthcare

基  金:2018年度兵团师市科技计划(社会发展科技攻关与成果转化项目)(项目编号:2018YL10)

摘  要:目的探讨石河子地区前列腺癌穿刺活检阳性预测模型(S-P模型)的临床应用价值。方法应用S-P模型对拟行经直肠超声引导下前列腺穿刺活检术的患者进行术前预测,与术后阳性实际发生率进行对比,分析预测结果与实际结果之间是否存在差异。结果采用S-P模型对我院拟行经直肠超声引导下前列腺系统穿刺活检的患者80例进行预测,结果显示患癌几率较大的共有40例,低风险患者40例,穿刺术后病理显示为前列腺癌的共45例,非前列腺癌患者35例,两组间比较无明显差异;差异无统计学意义(P>0.05)。结论石河子前列腺穿刺活检阳性风险预测模型(S-P模型)能够较准确的预测出行前列腺穿刺活检阳性的风险,可作为石河子地区前列腺穿刺的风险预测工具。Objective To explore clinical application value of positive predictive model for prostate cancer biopsy(S-P model). Methods To predict preoperative rate of transrectal ultrasound-guided prostate biopsy patients with S-P model, compare result with actual positive rate after operation to analyze difference between predicted and actual results. Results To predict 80 cases transrectal ultrasound-guided prostate biopsy patients in our hospital with S-P model. Result showed 40 cases having high cancer risks, 40 cases having low risks, 45 cases having prostate cancer and 35 having non-prostate cancer. Difference showed no statistical significance between two groups(P>0.05). Conclusion Positive risk prediction model of prostate biopsy(S-P model) can predict risk of positive prostate biopsy accurately, and can be used as risk prediction tool for prostate biopsy in Shihezi area.

关 键 词:S-P模型 前列腺穿刺活检术 风险预测 前列腺癌 

分 类 号:R73[医药卫生—肿瘤]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象