Tribological behavior of a Ni-WS2 composite coating across wide temperature ranges  被引量:3

Tribological behavior of a Ni-WS2 composite coating across wide temperature ranges

在线阅读下载全文

作  者:Shuai Cui Wen-Sheng Li Ling He Li Feng Guo-Sheng An Wei Hu Chun-Xia Hu 

机构地区:[1]School of Materials Science and Engineering,Lanzhou University of Technology,Lanzhou 730050,China [2]State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals,Lanzhou University of Technology,Lanzhou 730050,China

出  处:《Rare Metals》2019年第11期1078-1085,共8页稀有金属(英文版)

基  金:financially supported by International Science and Technology Cooperation Program of China(No.2015DFR51090);the Supporting Program of Gansu Province(No.1604WKCA008)

摘  要:In order to reduce the friction coefficient of a pure nickel coating and extend the lifetime of metal parts under extreme friction conditions,a series of Ni-based WS2-composite solid lubrication coating containing different WS2 concentrations were prepared on a 45#mild carbon steel substrate by electroplating.The cyclic voltammetry method was used to investigate the electroplating regulation of the Ni-WS2 composite coatings.X-ray diffraction(XRD) and scanning electron microscopy(SEM) were used to analyze the microstructures and wear surfaces of the composite coatings,the tribological properties and wear mechanisms of the composite coatings with different WS2 concentrations.The results show that the addition of WS2 can promote the cathode polarization of the electroplating process,and the polarization degree goes up with the increase in WS2 concentrations.The friction coefficient of Ni-composite coatings significantly decreases by the addition of WS2 particles.The lowest friction coefficient at room temperature is obtained at a value around 0.01-0.03 from the coating deposited in the electrolyte solution with a 30g·L^-1 WS2 concentration.The friction coefficient of the Ni-WS2 composite coating remains in 0.01-0.03 with the increase in temperature from room temperature to 300℃.When the temperature goes up to 500℃,the friction coefficient manifests a continuous increase to 0.12,because WS2 is gradually oxidized into WO3 and therefore loses its lubrication ability.In order to reduce the friction coefficient of a pure nickel coating and extend the lifetime of metal parts under extreme friction conditions,a series of Ni-based WS2-composite solid lubrication coating containing different WS2 concentrations were prepared on a 45#mild carbon steel substrate by electroplating.The cyclic voltammetry method was used to investigate the electroplating regulation of the Ni-WS2 composite coatings.X-ray diffraction(XRD) and scanning electron microscopy(SEM) were used to analyze the microstructures and wear surfaces of the composite coatings,the tribological properties and wear mechanisms of the composite coatings with different WS2 concentrations.The results show that the addition of WS2 can promote the cathode polarization of the electroplating process,and the polarization degree goes up with the increase in WS2 concentrations.The friction coefficient of Ni-composite coatings significantly decreases by the addition of WS2 particles.The lowest friction coefficient at room temperature is obtained at a value around 0.01-0.03 from the coating deposited in the electrolyte solution with a 30 g·L-1 WS2 concentration.The friction coefficient of the Ni-WS2 composite coating remains in 0.01-0.03 with the increase in temperature from room temperature to 300℃.When the temperature goes up to 500℃,the friction coefficient manifests a continuous increase to 0.12,because WS2 is gradually oxidized into WO3 and therefore loses its lubrication ability.

关 键 词:WS2 SELF-LUBRICATING composites coating Frictional WEAR Temperature 

分 类 号:TG1[金属学及工艺—金属学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象