检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:唐炉亮[1] 于智伟 任畅 杨雪[2] 张亚涛 TANG Lu-liang;YU Zhi-wei;REN Chang;YANG Xue;ZHANG Ya-tao(State Key Laboratory of Information Engineering in Surveying,Mapping and Remote Sensing,Wuhan University,Wuhan 430072,Hubei,China;School of Geography and Information Engineering.China University of Geosciences(Wuhan),Wuhan 430074,Hubei,China)
机构地区:[1]武汉大学测绘遥感信息工程国家重点实验室,湖北武汉430072 [2]中国地质大学(武汉)地理与信息工程学院,湖北武汉430074
出 处:《交通运输工程学报》2019年第5期170-179,共10页Journal of Traffic and Transportation Engineering
基 金:国家自然科学基金项目(41571430,41901394)
摘 要:为了识别立体交叉口中不同的行驶规则,利用随机森林特征选择方法分析了车辆轨迹数据特征,按照重要性评分对特征进行聚类;利用戴维森堡丁指数衡量聚类结果,获得交叉口最优聚类结果下的各个行驶规则的聚类簇,并构建聚类簇范围约束的狄洛尼三角网;利用骨架线提取与公共序列合并方法,提取立体交叉口的几何结构与拓扑连通关系,获取城市立体交叉口空间结构信息;以武汉市2016年出租车轨迹为数据源,选取了武汉市城区立体交叉口进行空间结构信息获取试验。研究结果表明:立体交叉口中车载GPS轨迹特征重要性评分的前4项依次是终点角度、起点角度、起终点角度差、中间角度平均值,其中利用终点角度与起点角度特征组合的聚类结果是最优的;立体交叉口空间结构信息获取方法在直行、左转、右转方向下识别准确率分别为85.7%、85.4%、87.5%,综合准确率为86.2%,直行、左转、右转方向下信息召回率分别为91.5%、87.2%、85.9%,综合召回率为88.2%,因此,较高的准确率与召回率说明本文提出的方法可以准确识别立体交叉口空间结构信息,并提取立体交叉口中各个行驶规则的几何与拓扑连通关系。In order to identify different driving rules at the three-dimensional intersections, the features of vehicle trajectory data were analyzed by using random forest feature selection algorithm, and features were clustered according to the importance scores. The clustered results were measured by Davies-Bouldin index to obtain each driving rule cluster under the optimal clustering result, and Delaunay triangle network was constructed based on the cluster range. The skeleton line extraction and common sequence combination method were used to obtain the geometric structure and topological connectivity relationship of three-dimensional intersection. Finally, the spatial structure information of three-dimensional intersection was obtained. Taking the taxi trajectory data of Wuhan in 2016 as data source, the spatial structure information acquisition experiment of three-dimensional intersection in Wuhan was conduct. Analysis result shows that the top four items of vehicle GPS trajectory feature importance scores are the angle of ending point, the angle of starting point, the difference of starting and ending point angles, and the mean angle of middle points. The clustering result using the characteristics combination of terminal angle and starting angle is optimal. The recognition precision rates of the spatial structure information acquisition method in the directions of straight, left and right turning are 85.7%, 85.4%, and 87.5%, respectively,and the comprehensive precision rate is 86.2%. The information recall rates in the directions of straight, left and right turning are 91.5%, 87.2%, and 85.9%, respectively, and the comprehensive recall rate is 88.2%. The higher precision rates and recall rates indicate that the proposed method can accurately identify the spatial structure information and extract the geometric and topological connectivity relationship of driving rules at three-dimensional intersection. 2 tabs, 14 figs, 30 refs.
关 键 词:交通信息 立体交叉口空间结构 轨迹聚类 随机森林选择方法 GPS轨迹数据 戴维森堡丁指数
分 类 号:U491.2[交通运输工程—交通运输规划与管理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.44