Fitness of F1 hybrids between stacked transgenic rice T1c-19 with cry1C*/bar genes and weedy rice  被引量:3

Fitness of F1 hybrids between stacked transgenic rice T1c-19 with cry1C*/bar genes and weedy rice

在线阅读下载全文

作  者:HUANG Yao WANG Yuan-yuan QIANG Sheng SONG Xiao-ling DAI Wei-min 

机构地区:[1]Weed Research Laboratory, College of Life Sciences, Nanjing Agricultural University

出  处:《Journal of Integrative Agriculture》2019年第12期2793-2805,共13页农业科学学报(英文版)

基  金:financially supported by the China Transgenic Organism Research and Commercialization Project (2016ZX08011-001)

摘  要:Compared to single-trait transgenic crops, stacked transgenic plants may be more prone to become weedy, and transgene flow from stacked transgenic plants to weedy relatives may pose a potential environmental risk because these hybrids could be more advantageous under specific environmental conditions. Evaluation of the potential environmental risk caused by stacked transgenes is essential for assessing the environmental consequences caused by crop-weed transgene flow. The agronomic performance of fitness-related traits was assessed in F1+(transgene positive) hybrids(using the transgenic line T1 c-19 as the paternal parent) in monoculture and mixed planting under presence or absence glufosinate pressure in the presence or absence of natural insect pressure and then compared with the performance of F1–(transgene negative) hybrids(using the non-transgenic line Minghui 63(MH63) as the paternal parent) and their weedy rice counterparts. The results demonstrated that compared with the F1– hybrids and weedy rice counterparts, the F1+ hybrid presented higher performance(P<0.05) or non-significant changes(P>0.05) under natural insect pressure, respectively, lower performance(P<0.05) or non-significant changes(P>0.05) in the absence of insect pressure in monoculture planting, respectively. And compared to weedy rice counterparts, the F1+ hybrid presented higher performance(P<0.05) or non-significant changes(P>0.05) in the presence or absence of insect pressure in mixed planting, respectively. The F1+ hybrids presented nonsignificant changes(P>0.05) under the presence or absence glufosinate pressure under insect or non-insect pressure in monoculture planting. The all F1+ hybrids and two of three F1– hybrids had significantly lower(P<0.05) seed shattering than the weedy rice counterparts. The potential risk of gene flow from T1 c-19 to weedy rice should be prevented due to the greater fitness advantage of F1 hybrids in the majority of cases.Compared to single-trait transgenic crops, stacked transgenic plants may be more prone to become weedy, and transgene flow from stacked transgenic plants to weedy relatives may pose a potential environmental risk because these hybrids could be more advantageous under specific environmental conditions. Evaluation of the potential environmental risk caused by stacked transgenes is essential for assessing the environmental consequences caused by crop-weed transgene flow. The agronomic performance of fitness-related traits was assessed in F1+(transgene positive) hybrids(using the transgenic line T1 c-19 as the paternal parent) in monoculture and mixed planting under presence or absence glufosinate pressure in the presence or absence of natural insect pressure and then compared with the performance of F1–(transgene negative) hybrids(using the non-transgenic line Minghui 63(MH63) as the paternal parent) and their weedy rice counterparts. The results demonstrated that compared with the F1– hybrids and weedy rice counterparts, the F1+ hybrid presented higher performance(P<0.05) or non-significant changes(P>0.05) under natural insect pressure, respectively, lower performance(P<0.05) or non-significant changes(P>0.05) in the absence of insect pressure in monoculture planting, respectively. And compared to weedy rice counterparts, the F1+ hybrid presented higher performance(P<0.05) or non-significant changes(P>0.05) in the presence or absence of insect pressure in mixed planting, respectively. The F1+ hybrids presented nonsignificant changes(P>0.05) under the presence or absence glufosinate pressure under insect or non-insect pressure in monoculture planting. The all F1+ hybrids and two of three F1– hybrids had significantly lower(P<0.05) seed shattering than the weedy rice counterparts. The potential risk of gene flow from T1 c-19 to weedy rice should be prevented due to the greater fitness advantage of F1 hybrids in the majority of cases.

关 键 词:weedy RICE HYBRIDS stacked TRANSGENES safety assessment FITNESS 

分 类 号:S51[农业科学—作物学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象