基于LSTM循环神经网络的泊位需求短时预测研究  被引量:4

Short Term Forecasting of Parking Demand Based on LSTM Recurrent Neural Network

在线阅读下载全文

作  者:裘瑞清 周后盘 吴辉[1,2] 阮益权 石敏 QIU Rui-qing;ZHOU Hou-pan;WU Hui;RUAN Yi-quan;SHI Min(Smart City Research Center of Hangzhou Dianzi University,Hangzhou 310018 China;2Regional Collaboration Innovation Center of Smart City,Hangzhou 310018 China)

机构地区:[1]杭州电子科技大学智慧城市研究中心,浙江杭州310018 [2]浙江智慧城市区域协同创新中心,浙江杭州310018

出  处:《自动化技术与应用》2019年第11期107-113,共7页Techniques of Automation and Applications

基  金:浙江省重点研发计划项目(编号2018C01016)

摘  要:本文提出基于深度学习理论的LSTM(Long Short-Term Memory,长短期记忆)单元的循环神经网络泊位需求预测模型,根据前几个小时泊位需求变化量对后续时间点对应的泊位需求量进行预测。以杭州某大学为实验对象,采用随机两天和特定两天数据进行实践验证。结果显示:采用LSTM循环神经网络模对区域内泊位需求进行预测能够比传统方法在结果上更加接近实际值,并且精度较为满意,表明该预测方法可行有效。A Recurrent neural network berth demand forecasting model based on LSTM(Long Short-Term Memory)unit is proposed in this paper.The berth demand corresponding to the following time points is forecasted according to the change of berth demand in the first few hours.Taking a university in Hangzhou as an experimental object,the data are tested by random two days and given two days.The results show that the LSTM Recurrent neural network model can be used to predict the regional berth demand more close to the actual value than the traditional method,and the accuracy is satisfactory,indicating that the prediction method is feasible and effective.

关 键 词:泊位需求预测 深度学习 长短时间记忆 循环神经网络 

分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象