多用户长码直扩信号的信源数估计  被引量:1

Estimation of the Number of Sources of Multi-user Long Code Direct Sequence Spread Spectrum Signals

在线阅读下载全文

作  者:李鑫凯 张天骐[1] 梁先明[2] LI Xin-kai;ZHANG Tian-qi;LIANG Xian-ming(College of Communication and Information,Chongqing University of Posts and Telecommunications,Chongqing 400065,China;Southwest Institute of Electronic Technology,Chengdu 610036,China)

机构地区:[1]重庆邮电大学通信与信息学院,重庆400065 [2]中国西南电子技术研究所,成都610036

出  处:《科学技术与工程》2019年第30期263-268,共6页Science Technology and Engineering

基  金:国家自然科学基金(61671095,61702065,61701067,61771085);信号与信息处理重庆市市级重点实验室建设项目(CSTC2009CA2003);重庆市研究生科研创新项目(CYS17219);重庆市教育委员会科研项目(KJ1600427,KJ1600429)资助。

摘  要:针对低信噪比(signal-to-noise ratio,SNR)下多用户长码直扩信号在信源数估计中容易产生虚拟用户数的问题,提出一种基于阵列接收的信源数估计方法。首先采用阵列天线对长码直扩信号进行信号接收;然后使用信息论、盖氏圆以及平滑秩的算法实现信源数的估计,最后对3种算法进行对比研究。所提的信源数估计方法相比于直接用3种算法估计信源数在信噪比上有很大的提高,而且不会产生虚拟用户数。理论分析和仿真结果表明:在信噪比较低的环境下,对周期长码和非周期长码信号的信源数估计都能达到较好的估计性能。Aiming at the problem that the number of virtual users is easy to be generated in the source number estimation under low signal-to-noise ratio(SNR),a source number estimation method based on array reception is proposed.Firsly,the method uses the array antenna to receive the signal of the long code direct sequence spread spectrum signal.Then,the information theory,Gai s circle and smooth rank algorithm are used to estimate the source number.Finally the three algorithms are compared.The proposed method for estimating the number of sources has a significant improvement in the signal-to-noise ratio compared to the estimating of the number of sources directly by the three classical algorithms,and does not generate a virtual number of users.Theoretical analysis and simulation results show that the estimation of the source number of the period long code and the aperiodic long code signal can achieve better estimation performance in the environment with low signal-to-noise ratio.

关 键 词:阵列天线 长码信号 信源数 多用户 

分 类 号:TP911.7[自动化与计算机技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象