检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Heping Liu Min Wang
机构地区:[1]School of Mathematical Sciences, Peking University
出 处:《Science China Mathematics》2019年第12期2535-2556,共22页中国科学:数学(英文版)
基 金:supported by National Natural Science Foundation of China(Grant No.11371036);supported by China Scholarship Council(Grant No.201606010026)
摘 要:In this article, we investigate the bilinear Riesz means Sα associated with the sublaplacian on the Heisenberg group. We prove that the operator Sαis bounded from Lp1 × Lp2 into Lp for 1 p1, p2 ∞ and1/p = 1/p1 + 1/p2 when α is larger than the suitable smoothness index α(p1, p2). There are some essential differences between the Euclidean space and the Heisenberg group for studying the bilinear Riesz means problem.We use some special techniques to obtain lower indices α(p1, p2).In this article,we investigate the bilinear Riesz means S^α associated with the sublaplacian on the Heisenberg group.We prove that the operator S^α is bounded from L^P1×L^P2 into Lp for 1≤p1,P2≤∞ and 1/p=1/p1+l/p2 when a is larger than the suitable smoothness index α(p1,p2)-There are some essential differences bet ween the Euclidean space and the Heisenberg group for studying the bilinear Riesz means problem.We use some special techniques to obtain lower indices α(p1,p2).
关 键 词:HEISENBERG group BILINEAR RIESZ means RESTRICTION THEOREM
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15