检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李亚可 玉振明 LI Yake;YU Zhenming(School of Information and Communication,Guilin University of Electronic Technology,Guilin,Guangxi 541004,China;School of Electronics and Information Engineering,Wuzhou University,Wuzhou,Guangxi 543002,China)
机构地区:[1]桂林电子科技大学信息与通信学院,广西桂林541004 [2]梧州学院电子信息工程学院,广西梧州543002
出 处:《计算机工程与应用》2019年第24期184-189,共6页Computer Engineering and Applications
基 金:广西重点研发计划(No.桂科AB16380273);国家自然科学基金(No.61562074)
摘 要:针对由于光照、分辨率、姿态和表情等因素变化引起的人脸检测准确性不高的问题和大多人脸检测算法使用单一的卷积神经网络去提取特征引起的算法的泛化能力变弱的问题,提出了三层由浅及深的级联的卷积神经网络结构。通过全卷积神经网络快速定位人脸候选区域,采用深度神经网络提取人脸鲁棒性特征,对候选区域进一步分类验证,并用联合回归的方法确定最终人脸位置,提高检测精度。同时通过加权降低得分改进常用的非极大值抑制的方法,解决了由于相邻人脸高度重叠引起的漏检问题。实验结果表明,该模型对上述引起人脸检测准确率不高的因素具有较好的鲁棒性,并且在FDDB数据集上有着较高的准确率和运行速度。改进后的非极大值抑制算法对在FDDB的测试准确率也有一定的提升。Aiming at the problem of low face detection accuracy caused by changes in lighting,low resolution,posture and expression,and the generalization of algorithms caused by most face detection algorithms using a single convolutional neural network to extract features,a three-layer convolutional neural network structure consisting of shallow and deep cascade is proposed.The face candidate region is quickly located by the full convolutional neural network.Then the depth neural network is used to extract the face robustness feature,and the candidate region is further classified and verified.The joint regression face method is used to determine the final face position and improve the detection accuracy.At the same time,the commonly used non-maximum value suppression method is improved by weighting the reduction score,and the missed detection problem caused by the overlapping of adjacent faces is solved.The experimental results show that the model is robust to the above-mentioned factors that cause low face detection accuracy,and it has high accuracy and running speed in FDDB dataset.The improved non-maximum suppression algorithm also has a certain improvement on the test accuracy of FDDB.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222